enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graph coloring - Wikipedia

    en.wikipedia.org/wiki/Graph_coloring

    Graph coloring enjoys many practical applications as well as theoretical challenges. Beside the classical types of problems, different limitations can also be set on the graph, or on the way a color is assigned, or even on the color itself. It has even reached popularity with the general public in the form of the popular number puzzle Sudoku ...

  3. List coloring - Wikipedia

    en.wikipedia.org/wiki/List_coloring

    For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.

  4. Category:Graph coloring - Wikipedia

    en.wikipedia.org/wiki/Category:Graph_coloring

    Pages in category "Graph coloring" The following 82 pages are in this category, out of 82 total. This list may not reflect recent changes. ...

  5. Complete coloring - Wikipedia

    en.wikipedia.org/wiki/Complete_coloring

    Finding ψ(G) is an optimization problem.The decision problem for complete coloring can be phrased as: . INSTANCE: a graph G = (V, E) and positive integer k QUESTION: does there exist a partition of V into k or more disjoint sets V 1, V 2, …, V k such that each V i is an independent set for G and such that for each pair of distinct sets V i, V j, V i ∪ V j is not an independent set.

  6. Greedy coloring - Wikipedia

    en.wikipedia.org/wiki/Greedy_coloring

    In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring [1] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but ...

  7. Incidence coloring - Wikipedia

    en.wikipedia.org/wiki/Incidence_coloring

    The minimum number of colors needed for the incidence coloring of a graph G is known as the incidence chromatic number or incidence coloring number of G, represented by (). This notation was introduced by Jennifer J. Quinn Massey and Richard A. Brualdi in 1993.

  8. Edge coloring - Wikipedia

    en.wikipedia.org/wiki/Edge_coloring

    A 3-edge-coloring of the Desargues graph. In graph theory, a proper edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green.

  9. Total coloring - Wikipedia

    en.wikipedia.org/wiki/Total_coloring

    The total chromatic number χ″(G) of a graph G is the fewest colors needed in any total coloring of G. The total graph T = T(G) of a graph G is a graph such that (i) the vertex set of T corresponds to the vertices and edges of G and (ii) two vertices are adjacent in T if and only if their corresponding elements are either adjacent or incident ...