enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Graph coloring - Wikipedia

    en.wikipedia.org/wiki/Graph_coloring

    For planar graphs, vertex colorings are essentially dual to nowhere-zero flows. About infinite graphs, much less is known. The following are two of the few results about infinite graph coloring: If all finite subgraphs of an infinite graph G are k-colorable, then so is G, under the assumption of the axiom of choice.

  3. Grötzsch's theorem - Wikipedia

    en.wikipedia.org/wiki/Grötzsch's_theorem

    A 3-coloring of a triangle-free planar graph. In the mathematical field of graph theory, Grötzsch's theorem is the statement that every triangle-free planar graph can be colored with only three colors.

  4. List coloring - Wikipedia

    en.wikipedia.org/wiki/List_coloring

    For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.

  5. Defective coloring - Wikipedia

    en.wikipedia.org/wiki/Defective_coloring

    For a graph class G, the defective chromatic number of G is minimum integer k such that for some integer d, every graph in G is (k,d)-colourable. For example, the defective chromatic number of the class of planar graphs equals 3, since every planar graph is (3,2)-colourable and for every integer d there is a planar graph that is not (2,d ...

  6. Planarity testing - Wikipedia

    en.wikipedia.org/wiki/Planarity_testing

    The Fraysseix–Rosenstiehl planarity criterion can be used directly as part of algorithms for planarity testing, while Kuratowski's and Wagner's theorems have indirect applications: if an algorithm can find a copy of K 5 or K 3,3 within a given graph, it can be sure that the input graph is not planar and return without additional computation.

  7. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    However, there exist fast algorithms for this problem: for a graph with n vertices, it is possible to determine in time O(n) (linear time) whether the graph may be planar or not (see planarity testing). For a simple, connected, planar graph with v vertices and e edges and f faces, the following simple conditions hold for v ≥ 3: Theorem 1. e ...

  8. Edge coloring - Wikipedia

    en.wikipedia.org/wiki/Edge_coloring

    By applying exact algorithms for vertex coloring to the line graph of the input graph, it is possible to optimally edge-color any graph with m edges, regardless of the number of colors needed, in time 2 m m O(1) and exponential space, or in time O(2.2461 m) and only polynomial space (Björklund, Husfeldt & Koivisto 2009).

  9. Chromatic polynomial - Wikipedia

    en.wikipedia.org/wiki/Chromatic_polynomial

    George David Birkhoff introduced the chromatic polynomial in 1912, defining it only for planar graphs, in an attempt to prove the four color theorem.If (,) denotes the number of proper colorings of G with k colors then one could establish the four color theorem by showing (,) > for all planar graphs G.