Search results
Results from the WOW.Com Content Network
In mathematics, the special linear group SL(n, R) of degree n over a commutative ring R is the set of n × n matrices with determinant 1, with the group operations of ordinary matrix multiplication and matrix inversion. This is the normal subgroup of the general linear group given by the kernel of the determinant
SL(2, R) is the group of all linear transformations of R 2 that preserve oriented area. It is isomorphic to the symplectic group Sp(2, R) and the special unitary group SU(1, 1). It is also isomorphic to the group of unit-length coquaternions. The group SL ± (2, R) preserves unoriented area: it may reverse orientation.
In mathematics, the special linear Lie algebra of order over a field, denoted or (,), is the Lie algebra of all the matrices (with entries in ) with trace zero and with the Lie bracket [,]:= given by the commutator. This algebra is well studied and understood, and is often used as a model for the study of other Lie algebras.
The generator of any continuous symmetry implied by Noether's theorem, the generators of a Lie group being a special case. In this case, a generator is sometimes called a charge or Noether charge, examples include: angular momentum as the generator of rotations, [3] linear momentum as the generator of translations, [3]
In mathematics, the modular group is the projective special linear group (,) of 2 × 2 matrices with integer coefficients and determinant 1. The matrices A and − A are identified. The modular group acts on the upper-half of the complex plane by fractional linear transformations , and the name "modular group" comes from the relation to ...
PSL(2, 2) is isomorphic to the symmetric group S 3, and PSL(2, 3) is isomorphic to alternating group A 4. In fact, PSL(2, 7) is the second smallest nonabelian simple group, after the alternating group A 5 = PSL(2, 5) = PSL(2, 4). The number of conjugacy classes and irreducible representations is 6. The sizes of conjugacy classes are 1, 21, 42 ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The projective special linear group, PSL, is defined analogously, as the induced action of the special linear group on the associated projective space. Explicitly: PSL(V) = SL(V) / SZ(V) where SL(V) is the special linear group over V and SZ(V) is the subgroup of scalar transformations with unit determinant.