Search results
Results from the WOW.Com Content Network
[2] [3] Many of the simple molecules of organic chemistry, such as the alkanes and alkenes, have both linear and ring isomers, that is, both acyclic and cyclic. For those with 4 or more carbons, the linear forms can have straight-chain or branched-chain isomers.
The following is a list of straight-chain alkanes, the total number of isomers of each (including branched chains), and their common names, sorted by number of carbon atoms. [ 1 ] [ 2 ] Number of C atoms
An alkane is an acyclic saturated hydrocarbon. See Alkane. Alkanes as substituents are called alkyl groups Subcategories. This category has the following 5 ...
In organic chemistry, an alkane, or paraffin (a historical trivial name that also has other meanings), is an acyclic saturated hydrocarbon. In other words, an alkane consists of hydrogen and carbon atoms arranged in a tree structure in which all the carbon–carbon bonds are single. [1] Alkanes have the general chemical formula C n H 2n+2.
Idealized mechanism for metal-catalysed hydrosilylation of an alkene. Hydrosilylation of alkenes represents a commercially important method for preparing organosilicon compounds. The process is mechanistically similar to the hydrogenation of alkenes. In fact, similar catalysts are sometimes employed for the two catalytic processes.
Reaction is slower with alkynes than alkenes. [3]: 750 In the paradigmatic example, hydrogen bromide radicalyzes to monatomic bromine. These bromine atoms add to an alkene at the most accessible site, to give a bromoalkyl radical, with the radical on the more substituted carbon.
A 3D model of ethyne (), the simplest alkyneIn organic chemistry, an alkyne is an unsaturated hydrocarbon containing at least one carbon—carbon triple bond. [1] The simplest acyclic alkynes with only one triple bond and no other functional groups form a homologous series with the general chemical formula C n H 2n−2.
Transition metal alkyne complexes are often formed by the displacement of labile ligands by the alkyne. For example, a variety of cobalt-alkyne complexes arise by the reaction of alkynes with dicobalt octacarbonyl. [2] Co 2 (CO) 8 + R 2 C 2 → (R 2 C 2)Co 2 (CO) 6 + 2 CO. Many alkyne complexes are produced by reduction of metal halides: [3]