enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trigonometric integral - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_integral

    By definition, Si(x) is the antiderivative of sin x / x whose value is zero at x = 0, and si(x) is the antiderivative whose value is zero at x = ∞. Their difference is given by the Dirichlet integral, ⁡ ⁡ = ⁡ = ⁡ = + ⁡ .

  3. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals.

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

  5. Cauchy principal value - Wikipedia

    en.wikipedia.org/wiki/Cauchy_principal_value

    The result of the procedure for principal value is the same as the ordinary integral; since it no longer matches the definition, it is technically not a "principal value". The Cauchy principal value can also be defined in terms of contour integrals of a complex-valued function f ( z ) : z = x + i y , {\displaystyle f(z):z=x+i\,y\;,} with x , y ...

  6. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    To calculate this integral, one uses the function = (⁡ +) and the branch of the logarithm corresponding to −π < arg z ≤ π. We will calculate the integral of f(z) along the keyhole contour shown at right. As it turns out this integral is a multiple of the initial integral that we wish to calculate and by the Cauchy residue theorem we have

  7. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.

  8. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    The integral over this curve can then be computed using the residue theorem. Often, the half-circle part of the integral will tend towards zero as the radius of the half-circle grows, leaving only the real-axis part of the integral, the one we were originally interested in.

  9. List of definite integrals - Wikipedia

    en.wikipedia.org/wiki/List_of_definite_integrals

    In mathematics, the definite integral ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} is the area of the region in the xy -plane bounded by the graph of f , the x -axis, and the lines x = a and x = b , such that area above the x -axis adds to the total, and that below the x -axis subtracts from the total.