Search results
Results from the WOW.Com Content Network
Heapsort maps the binary tree to the array using a top-down breadth-first traversal of the tree; the array begins with the root of the tree, then its two children, then four grandchildren, and so on. Every element has a well-defined depth below the root of the tree, and every element except the root has its parent earlier in the array.
For example, if every element is at a position that differs by at most k (k ≥ 1) from the position it is going to end up in, the complexity of cocktail shaker sort becomes (). The cocktail shaker sort is also briefly discussed in the book The Art of Computer Programming , along with similar refinements of bubble sort.
Bubble sort, sometimes referred to as sinking sort, is a simple sorting algorithm that repeatedly steps through the input list element by element, comparing the current element with the one after it, swapping their values if needed. These passes through the list are repeated until no swaps have to be performed during a pass, meaning that the ...
Sorting small arrays optimally (in fewest comparisons and swaps) or fast (i.e. taking into account machine specific details) is still an open research problem, with solutions only known for very small arrays (<20 elements). Similarly optimal (by various definitions) sorting on a parallel machine is an open research topic.
Swap the first element of the array (the largest element in the heap) with the final element of the heap. Decrease the considered range of the heap by one. Call the siftDown() function on the array to move the new first element to its correct place in the heap. Go back to step (2) until the remaining array is a single element.
In computer science, selection sort is an in-place comparison sorting algorithm.It has a O(n 2) time complexity, which makes it inefficient on large lists, and generally performs worse than the similar insertion sort.
We then run through the list comparing each element in the first half to the element in the second half. Our second gap (k) is 256, which breaks the array into four sections (starting at 0, 256, 512, 768), and we make sure the first items in each section are sorted relative to each other, then the second item in each section, and so on. In ...
Whenever the sum of the current element in the first array and the current element in the second array is more than T, the algorithm moves to the next element in the first array. If it is less than T, the algorithm moves to the next element in the second array. If two elements that sum to T are found, it stops. (The sub-problem for two elements ...