Search results
Results from the WOW.Com Content Network
In electrochemistry, the electrochemical potential of electrons (or any other species) is the total potential, including both the (internal, nonelectrical) chemical potential and the electric potential, and is by definition constant across a device in equilibrium, whereas the chemical potential of electrons is equal to the electrochemical ...
The EW is a term that is commonly used to indicate the potential range and the potential difference. It is calculated by subtracting the reduction potential (cathodic limit) from the oxidation potential (anodic limit). [1] When the substance of interest is water, it is often referred to as the water window.
Galvani potential , Volta potential and surface potential in one phase. The corresponding potential differences computed between two phases. In electrochemistry, the Galvani potential (also called Galvani potential difference, or inner potential difference, Δφ, delta phi) is the electric potential difference between two points in the bulk of two phases. [1]
In a p–n junction diode at equilibrium the chemical potential (internal chemical potential) varies from the p-type to the n-type side, while the total chemical potential (electrochemical potential, or, Fermi level) is constant throughout the diode. As described above, when describing chemical potential, one has to say "relative to what".
When a chemical reaction is driven by an electrical potential difference, as in electrolysis, or if a potential difference results from a chemical reaction as in an electric battery or fuel cell, it is called an electrochemical reaction. Unlike in other chemical reactions, in electrochemical reactions electrons are not transferred directly ...
An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts: The chemical gradient, or difference in solute concentration across a membrane. The electrical gradient, or difference in charge across a membrane.
The potential difference is caused by differences in the concentration of charge-carriers between bulk solution and the electrode surface. It occurs when electrochemical reaction is sufficiently rapid to lower the surface concentration of the charge-carriers below that of bulk solution.
Electrochemical potential (E C) is the sum of liquid junction or diffusion potential (E J), and membrane potential (E M) Fig1: Electrochemical Potential: Liquid junction & membrane potential. Liquid junction potential is established at the direct contact of the mud filtrate and formation water at the edge of the invaded formation.