enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Applications of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Applications_of_quantum...

    Even so, classical physics can often provide good approximations to results otherwise obtained by quantum physics, typically in circumstances with large numbers of particles or large quantum numbers. Since classical formulas are much simpler and easier to compute than quantum formulas, classical approximations are used and preferred when the ...

  3. List of equations in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    One particle: N particles: One dimension ^ = ^ + = + ^ = = ^ + (,,) = = + (,,) where the position of particle n is x n. = + = = +. (,) = /.There is a further restriction — the solution must not grow at infinity, so that it has either a finite L 2-norm (if it is a bound state) or a slowly diverging norm (if it is part of a continuum): [1] ‖ ‖ = | |.

  4. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    A quantum-mechanical analogue of the gravitational three-body problem in classical mechanics is the helium atom, in which a helium nucleus and two electrons interact according to the inverse-square Coulomb interaction. Like the gravitational three-body problem, the helium atom cannot be solved exactly. [41]

  5. Quantum chaos - Wikipedia

    en.wikipedia.org/wiki/Quantum_chaos

    Quantum chaos is the field of physics attempting to bridge the theories of quantum mechanics and classical mechanics. The figure shows the main ideas running in each direction. Quantum chaos is a branch of physics focused on how chaotic classical dynamical systems can be described in terms of quantum theory.

  6. Step potential - Wikipedia

    en.wikipedia.org/wiki/Step_potential

    In quantum mechanics and scattering theory, the one-dimensional step potential is an idealized system used to model incident, reflected and transmitted matter waves.The problem consists of solving the time-independent Schrödinger equation for a particle with a step-like potential in one dimension.

  7. Path integral formulation - Wikipedia

    en.wikipedia.org/wiki/Path_integral_formulation

    The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics.It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

  8. Simon's problem - Wikipedia

    en.wikipedia.org/wiki/Simon's_problem

    Simon exhibited a quantum algorithm that solves Simon's problem exponentially faster with exponentially fewer queries than the best probabilistic (or deterministic) classical algorithm. In particular, Simon's algorithm uses a linear number of queries and any classical probabilistic algorithm must use an exponential number of queries.

  9. Rectangular potential barrier - Wikipedia

    en.wikipedia.org/wiki/Rectangular_potential_barrier

    In classical wave-physics, this effect is known as evanescent wave coupling. The likelihood that the particle will pass through the barrier is given by the transmission coefficient, whereas the likelihood that it is reflected is given by the reflection coefficient. Schrödinger's wave-equation allows these coefficients to be calculated.