enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electric charge - Wikipedia

    en.wikipedia.org/wiki/Electric_charge

    Charge taken from one material is moved to the other material, leaving an opposite charge of the same magnitude behind. The law of conservation of charge always applies, giving the object from which a negative charge is taken a positive charge of the same magnitude, and vice versa.

  3. Mass-to-charge ratio - Wikipedia

    en.wikipedia.org/wiki/Mass-to-charge_ratio

    When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.

  4. Method of image charges - Wikipedia

    en.wikipedia.org/wiki/Method_of_image_charges

    The method of image charges (also known as the method of images and method of mirror charges) is a basic problem-solving tool in electrostatics.The name originates from the replacement of certain elements in the original layout with fictitious charges, which replicates the boundary conditions of the problem (see Dirichlet boundary conditions or Neumann boundary conditions).

  5. Static electricity - Wikipedia

    en.wikipedia.org/wiki/Static_electricity

    The phenomenon of static electricity requires a separation of positive and negative charges. When two materials are in contact, electrons may move from one material to the other, which leaves an excess of positive charge on one material, and an equal negative charge on the other. When the materials are separated they retain this charge imbalance.

  6. Space charge - Wikipedia

    en.wikipedia.org/wiki/Space_charge

    As an application example, the steady-state space-charge-limited current across a piece of intrinsic silicon with a charge-carrier mobility of 1500 cm 2 /V-s, a relative dielectric constant of 11.9, an area of 10 −8 cm 2 and a thickness of 10 −4 cm can be calculated by an online calculator to be 126.4 μA at 3 V. Note that in order for this ...

  7. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    The electric potential at any location, r, in a system of point charges is equal to the sum of the individual electric potentials due to every point charge in the system. This fact simplifies calculations significantly, because addition of potential (scalar) fields is much easier than addition of the electric (vector) fields.

  8. Charge conservation - Wikipedia

    en.wikipedia.org/wiki/Charge_conservation

    In physics, charge conservation is the principle, of experimental nature, that the total electric charge in an isolated system never changes. [1] The net quantity of electric charge, the amount of positive charge minus the amount of negative charge in the universe, is always conserved .

  9. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    One may take the equation for the electrostatic potential energy of a continuous charge distribution and put it in terms of the electrostatic field. Since Gauss's law for electrostatic field in differential form states ∇ ⋅ E = ρ ε 0 {\displaystyle \mathbf {\nabla } \cdot \mathbf {E} ={\frac {\rho }{\varepsilon _{0}}}} where