enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Least-squares support vector machine - Wikipedia

    en.wikipedia.org/wiki/Least-squares_support...

    Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.

  3. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    Classification of satellite data like SAR data using supervised SVM. [13] Hand-written characters can be recognized using SVM. [14] [15] The SVM algorithm has been widely applied in the biological and other sciences. They have been used to classify proteins with up to 90% of the compounds classified correctly.

  4. LIBSVM - Wikipedia

    en.wikipedia.org/wiki/LIBSVM

    The SVM learning code from both libraries is often reused in other open source machine learning toolkits, including GATE, KNIME, Orange [3] and scikit-learn. [4] Bindings and ports exist for programming languages such as Java, MATLAB, R, Julia, and Python. It is available in e1071 library in R and scikit-learn in Python.

  5. Sequential minimal optimization - Wikipedia

    en.wikipedia.org/wiki/Sequential_minimal...

    Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem that arises during the training of support-vector machines (SVM). It was invented by John Platt in 1998 at Microsoft Research. [1] SMO is widely used for training support vector machines and is implemented by the popular LIBSVM tool.

  6. Ranking SVM - Wikipedia

    en.wikipedia.org/wiki/Ranking_SVM

    In machine learning, a ranking SVM is a variant of the support vector machine algorithm, which is used to solve certain ranking problems (via learning to rank). The ranking SVM algorithm was published by Thorsten Joachims in 2002. [1] The original purpose of the algorithm was to improve the performance of an internet search engine.

  7. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [1]

  8. Multi-label classification - Wikipedia

    en.wikipedia.org/wiki/Multi-label_classification

    The scikit-learn Python package implements some multi-labels algorithms and metrics. The scikit-multilearn Python package specifically caters to the multi-label classification. It provides multi-label implementation of several well-known techniques including SVM, kNN and many more. The package is built on top of scikit-learn ecosystem.

  9. Hinge loss - Wikipedia

    en.wikipedia.org/wiki/Hinge_loss

    While binary SVMs are commonly extended to multiclass classification in a one-vs.-all or one-vs.-one fashion, [2] it is also possible to extend the hinge loss itself for such an end. Several different variations of multiclass hinge loss have been proposed. [3] For example, Crammer and Singer [4] defined it for a linear classifier as [5]