Search results
Results from the WOW.Com Content Network
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
Going the "long way round" on a great circle between two points on a sphere is a geodesic but not the shortest path between the points. The map t → t 2 {\displaystyle t\to t^{2}} from the unit interval on the real number line to itself gives the shortest path between 0 and 1, but is not a geodesic because the velocity of the corresponding ...
Because the lines are parallel, the perpendicular distance between them is a constant, so it does not matter which point is chosen to measure the distance. Given the equations of two non-vertical parallel lines = + = +, the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular ...
Formulas for computing distances between different types of objects include: The distance from a point to a line, in the Euclidean plane [8] The distance from a point to a plane in three-dimensional Euclidean space [8] The distance between two lines in three-dimensional Euclidean space [9]
The curve of fastest descent is not a straight or polygonal line (blue) but a cycloid (red).. In physics and mathematics, a brachistochrone curve (from Ancient Greek βράχιστος χρόνος (brákhistos khrónos) ' shortest time '), [1] or curve of fastest descent, is the one lying on the plane between a point A and a lower point B, where B is not directly below A, on which a bead ...
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
The distance between two points in physical space is the length of a straight line between them, which is the shortest possible path. This is the usual meaning of distance in classical physics, including Newtonian mechanics. Straight-line distance is formalized mathematically as the Euclidean distance in two-and three-dimensional space.
There are several ways of defining geodesics (Hilbert & Cohn-Vossen 1952, pp. 220–221).A simple definition is as the shortest path between two points on a surface. However, it is frequently more useful to define them as paths with zero geodesic curvature—i.e., the analogue of straight lines on a curved su