Search results
Results from the WOW.Com Content Network
The spectral series of hydrogen, on a logarithmic scale. The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom.
Paul Sabatier (1854-1941) winner of the Nobel Prize in Chemistry in 1912 and discoverer of the reaction in 1897. The Sabatier reaction or Sabatier process produces methane and water from a reaction of hydrogen with carbon dioxide at elevated temperatures (optimally 300–400 °C) and pressures (perhaps 3 MPa [1]) in the presence of a nickel catalyst.
Not deterred by this prediction, Stark undertook measurements [3] on excited states of the hydrogen atom and succeeded in observing splittings. By the use of the Bohr–Sommerfeld ("old") quantum theory, Paul Epstein [4] and Karl Schwarzschild [5] were independently able to derive equations for the linear and quadratic Stark effect in hydrogen.
The "visible" hydrogen emission spectrum lines in the Balmer series. H-alpha is the red line at the right. Four lines (counting from the right) are formally in the visible range. Lines five and six can be seen with the naked eye, but are considered to be ultraviolet as they have wavelengths less than 400 nm.
Hydrogen is a chemical ... and because it is the carbon-hydrogen bond that gives this class of compounds most of its particular chemical ... 11.23 4.21E-06 1.74E-05 ...
In physics, the Saha ionization equation is an expression that relates the ionization state of a gas in thermal equilibrium to the temperature and pressure. [1] [2] The equation is a result of combining ideas of quantum mechanics and statistical mechanics and is used to explain the spectral classification of stars.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The hydrogen cycle consists of hydrogen exchanges between biotic (living) and abiotic (non-living) sources and sinks of hydrogen-containing compounds. Hydrogen (H) is the most abundant element in the universe. [1] On Earth, common H-containing inorganic molecules include water (H 2 O), hydrogen gas (H 2), hydrogen sulfide (H 2 S), and ammonia ...