enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bareiss algorithm - Wikipedia

    en.wikipedia.org/wiki/Bareiss_algorithm

    Determinant definition has only multiplication, addition and subtraction operations. Obviously the determinant is integer if all matrix entries are integer. However actual computation of the determinant using the definition or Leibniz formula is impractical, as it requires O(n!) operations.

  3. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    For example, the determinant of the complex conjugate of a complex matrix (which is also the determinant of its conjugate transpose) is the complex conjugate of its determinant, and for integer matrices: the reduction modulo of the determinant of such a matrix is equal to the determinant of the matrix reduced modulo (the latter determinant ...

  4. Xcas - Wikipedia

    en.wikipedia.org/wiki/Xcas

    Xcas is written in C++. [3] Giac can be used directly inside software written in C++. Xcas has compatibility modes with many popular algebra systems like WolframAlpha, [4] Mathematica, [5] Maple, [6] or MuPAD. Users can use Giac/Xcas to develop formal algorithms or use it in other software. Giac is used in SageMath [4] for calculus operations.

  5. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then

  6. Hilbert matrix - Wikipedia

    en.wikipedia.org/wiki/Hilbert_matrix

    The Hilbert matrix is also totally positive (meaning that the determinant of every submatrix is positive). The Hilbert matrix is an example of a Hankel matrix. It is also a specific example of a Cauchy matrix. The determinant can be expressed in closed form, as a special case of the Cauchy determinant. The determinant of the n × n Hilbert ...

  7. Hadamard's maximal determinant problem - Wikipedia

    en.wikipedia.org/wiki/Hadamard's_maximal...

    This matrix has elements 0 and −2. (The determinant of this submatrix is the same as that of the original matrix, as can be seen by performing a cofactor expansion on column 1 of the matrix obtained in Step 1.) Divide the submatrix by −2 to obtain a {0, 1} matrix. (This multiplies the determinant by (−2) 1−n.) Example:

  8. Matrix determinant lemma - Wikipedia

    en.wikipedia.org/wiki/Matrix_determinant_lemma

    The determinant of the left hand side is the product of the determinants of the three matrices. Since the first and third matrix are triangular matrices with unit diagonal, their determinants are just 1. The determinant of the middle matrix is our desired value. The determinant of the right hand side is simply (1 + v T u). So we have the result:

  9. Hankel matrix - Wikipedia

    en.wikipedia.org/wiki/Hankel_matrix

    The Hankel matrix transform, or simply Hankel transform, of a sequence is the sequence of the determinants of the Hankel matrices formed from . Given an integer n > 0 {\displaystyle n>0} , define the corresponding ( n × n ) {\displaystyle (n\times n)} -dimensional Hankel matrix B n {\displaystyle B_{n}} as having the matrix elements [ B n ] i ...