Search results
Results from the WOW.Com Content Network
In engineering, shear strength is the strength of a material or component against the type of yield or structural failure when the material or component fails in shear. A shear load is a force that tends to produce a sliding failure on a material along a plane that is parallel to the direction of the force. When a paper is cut with scissors ...
Shear modulus: Ratio of shear stress to shear strain (MPa) Shear strength: Maximum shear stress a material can withstand; Slip: A tendency of a material's particles to undergo plastic deformation due to a dislocation motion within the material. Common in Crystals. Specific modulus: Modulus per unit volume (MPa/m^3) Specific strength: Strength ...
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress.They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength.
Maximum shear stress theory postulates that failure will occur if the magnitude of the maximum shear stress in the part exceeds the shear strength of the material determined from uniaxial testing. Maximum normal stress theory postulates that failure will occur if the maximum normal stress in the part exceeds the ultimate tensile stress of the ...
Hardwood plywood is characterized by its excellent strength, stiffness, durability and resistance to creep. It has a high planar shear strength and impact resistance, which make it especially suitable for heavy-duty floor and wall structures. Oriented plywood construction has a high wheel-carrying capacity.
It is also known as the strength-to-weight ratio or strength/weight ratio or strength-to-mass ratio. In fiber or textile applications, tenacity is the usual measure of specific strength. The SI unit for specific strength is Pa ⋅ m 3 / kg , or N ⋅m/kg, which is dimensionally equivalent to m 2 /s 2 , though the latter form is rarely used.
Hankinson's equation (also called Hankinson's formula or Hankinson's criterion) [1] is a mathematical relationship for predicting the off-axis uniaxial compressive strength of wood. The formula can also be used to compute the fiber stress or the stress wave velocity at the elastic limit as a function of grain angle in wood.