enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    Log-likelihood function is the logarithm of the likelihood function, often denoted by a lowercase l or ⁠ ⁠, to contrast with the uppercase L or for the likelihood. Because logarithms are strictly increasing functions, maximizing the likelihood is equivalent to maximizing the log-likelihood.

  3. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    In statistics, the likelihood-ratio test is a hypothesis test that involves comparing the goodness of fit of two competing statistical models, typically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods.

  4. Likelihood ratios in diagnostic testing - Wikipedia

    en.wikipedia.org/wiki/Likelihood_ratios_in...

    If the likelihood ratio for a test in a population is not clearly better than one, the test will not provide good evidence: the post-test probability will not be meaningfully different from the pretest probability. Knowing or estimating the likelihood ratio for a test in a population allows a clinician to better interpret the result. [7]

  5. Relative likelihood - Wikipedia

    en.wikipedia.org/wiki/Relative_likelihood

    Given a model, likelihood intervals can be compared to confidence intervals. If θ is a single real parameter, then under certain conditions, a 14.65% likelihood interval (about 1:7 likelihood) for θ will be the same as a 95% confidence interval (19/20 coverage probability).

  6. Likelihood principle - Wikipedia

    en.wikipedia.org/wiki/Likelihood_principle

    In statistics, the likelihood principle is the proposition that, given a statistical model, all the evidence in a sample relevant to model parameters is contained in the likelihood function. A likelihood function arises from a probability density function considered as a function

  7. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    We can derive the value of the G-test from the log-likelihood ratio test where the underlying model is a multinomial model.. Suppose we had a sample = (, …,) where each is the number of times that an object of type was observed.

  8. Posterior probability - Wikipedia

    en.wikipedia.org/wiki/Posterior_probability

    The posterior probability distribution of one random variable given the value of another can be calculated with Bayes' theorem by multiplying the prior probability distribution by the likelihood function, and then dividing by the normalizing constant, as follows:

  9. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.