enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wind engineering - Wikipedia

    en.wikipedia.org/wiki/Wind_engineering

    Flow visualization of wind speed contours around a house Wind engineering covers the aerodynamic effects of buildings Damaged wind turbines due to hurricane Maria. Wind engineering is a subset of mechanical engineering, structural engineering, meteorology, and applied physics that analyzes the effects of wind in the natural and the built environment and studies the possible damage ...

  3. Wind profile power law - Wikipedia

    en.wikipedia.org/wiki/Wind_profile_power_law

    The wind profile power law relationship is = where is the wind speed (in metres per second) at height (in metres), and is the known wind speed at a reference height .The exponent is an empirically derived coefficient that varies dependent upon the stability of the atmosphere.

  4. IEC 61400 - Wikipedia

    en.wikipedia.org/wiki/IEC_61400

    Because the fatigue loads of a number of major components in a wind turbine are mainly caused by turbulence, the knowledge of how turbulent a site is of crucial importance. Normally the wind speed increases with increasing height due to vertical wind shear. In flat terrain the wind speed increases logarithmically with height. In complex terrain ...

  5. Wind energy software - Wikipedia

    en.wikipedia.org/wiki/Wind_energy_software

    Germanischer Lloyd found FAST suitable for "the calculation of onshore wind turbine loads for design and certification." [3] [4] The open source software QBlade developed by the wind energy research group of Hermann Föttinger Institute of TU Berlin (Chair of Fluid Dynamics) is a BEM code coupled with the airfoil simulation code XFOIL.

  6. Log wind profile - Wikipedia

    en.wikipedia.org/wiki/Log_wind_profile

    When estimating wind loads on structures the terrains may be described as suburban or dense urban, for which the ranges are typically 0.1-0.5 m and 1-5 m respectively. [ 2 ] In order to estimate the mean wind speed at one height ( z 2 {\displaystyle {{z}_{2}}} ) based on that at another ( z 1 {\displaystyle {{z}_{1}}} ), the formula would be ...

  7. Roughness length - Wikipedia

    en.wikipedia.org/wiki/Roughness_length

    Roughness length is a parameter of some vertical wind profile equations that model the horizontal mean wind speed near the ground. In the log wind profile, it is equivalent to the height at which the wind speed theoretically becomes zero in the absence of wind-slowing obstacles and under neutral conditions. In reality, the wind at this height ...

  8. Wind turbine design - Wikipedia

    en.wikipedia.org/wiki/Wind_turbine_design

    An example of a wind turbine, this 3 bladed turbine is the classic design of modern wind turbines Wind turbine components : 1-Foundation, 2-Connection to the electric grid, 3-Tower, 4-Access ladder, 5-Wind orientation control (Yaw control), 6-Nacelle, 7-Generator, 8-Anemometer, 9-Electric or Mechanical Brake, 10-Gearbox, 11-Rotor blade, 12-Blade pitch control, 13-Rotor hub

  9. Wind resource assessment - Wikipedia

    en.wikipedia.org/wiki/Wind_resource_assessment

    Wind speeds can vary considerably across a wind farm site if the terrain is complex (hilly) or there are changes in roughness (the height of vegetation or buildings). Wind flow modeling software, based on either the traditional WAsP linear approach or the newer CFD approach, is used to calculate these variations in wind speed.