Search results
Results from the WOW.Com Content Network
Lactic acid fermentation is a metabolic process by which glucose or other six-carbon sugars (also, disaccharides of six-carbon sugars, e.g. sucrose or lactose) are converted into cellular energy and the metabolite lactate, which is lactic acid in solution.
As a result, they rely on lactic acid fermentation to provide the majority of their energy needs. [23] Adaptations in particular in the turtle's blood composition and shell allow it to tolerate high levels of lactic acid accumulation. In the anoxic conditions where fermentation is dominant, calcium levels in the blood plasma increase. [23]
Cori cycle. The Cori cycle (also known as the lactic acid cycle), named after its discoverers, Carl Ferdinand Cori and Gerty Cori, [1] is a metabolic pathway in which lactate, produced by anaerobic glycolysis in muscles, is transported to the liver and converted to glucose, which then returns to the muscles and is cyclically metabolized back to lactate.
Lactic acid fermentation is relatively inefficient. The waste products lactic acid and ethanol have not been fully oxidized and still contain energy, but it requires the addition of oxygen to extract this energy. [8] Generally, lactic acid fermentation occurs only when aerobic cells are lacking oxygen.
Pyruvate is the terminal electron acceptor in lactic acid fermentation. When sufficient oxygen is not present in the muscle cells for further oxidation of pyruvate and NADH produced in glycolysis, NAD+ is regenerated from NADH by reduction of pyruvate to lactate. [4] Lactate is converted to pyruvate by the enzyme lactate dehydrogenase. [3]
Metabolic acidosis may result from either increased production of metabolic acids, such as lactic acid, or disturbances in the ability to excrete acid via the kidneys, such as either renal tubular acidosis or the acidosis of kidney failure, which is associated with an accumulation of urea and creatinine as well as metabolic acid residues of ...
Even the human body carries out fermentation processes from time to time, such as during long-distance running; lactic acid will build up in muscles over the course of long-term exertion. Within the human body, lactic acid is the by-product of ATP -producing fermentation, which produces energy so the body can continue to exercise in situations ...
While the cytosolic fermentation pathway of lactate is well established, a novel feature of the lactate shuttle hypothesis is the oxidation of lactate in the mitochondria. Baba and Sherma (1971) were the first to identify the enzyme lactate dehydrogenase (LDH) in the mitochondrial inner membrane and matrix of rat skeletal and cardiac muscle. [ 13 ]