Search results
Results from the WOW.Com Content Network
The SOFAR channel (short for sound fixing and ranging channel), or deep sound channel (DSC), [1] is a horizontal layer of water in the ocean at which depth the speed of sound is at its minimum. The SOFAR channel acts as a waveguide for sound, and low frequency sound waves within the channel may travel thousands of miles before dissipating.
Output of a computer model of underwater acoustic propagation in a simplified ocean environment. A seafloor map produced by multibeam sonar. Underwater acoustics (also known as hydroacoustics) is the study of the propagation of sound in water and the interaction of the mechanical waves that constitute sound with the water, its contents and its boundaries.
Underwater communication is difficult due to factors such as multi-path propagation, time variations of the channel, small available bandwidth and strong signal attenuation, especially over long ranges. Compared to terrestrial communication, underwater communication has low data rates because it uses acoustic waves instead of electromagnetic waves.
Tech expert Kurt “CyberGuy" Knutsson discusses how MAB Robotics' Honey Badger 4.0, a versatile robot, now walks underwater with amphibious skills. Robot dog is making waves with its underwater ...
Also visible in figure 1 is a common feature in sound speed profiles: the SOFAR channel. The axis of this channel is found at the depth of minimum sound speed. Sounds emitted at or near the axis of this channel propagate for very long horizontal distances, owing to the refraction of the sound back to the channel's center. [2]
The SOFAR channel (short for Sound Fixing and Ranging channel), or deep sound channel (DSC), is a horizontal layer of water in the ocean at which depth the speed of sound is minimal, in average around 1200 m deep. [2] It acts as a wave-guide for sound, and low frequency sound waves within the channel may travel thousands of miles before ...
Get a daily dose of cute photos of animals like cats, dogs, and more along with animal related news stories for your daily life from AOL.
Amphibians like frogs and toads can vocalise using vibrating tissues in airflow. For example, frogs use vocal sacs and an air-recycling system to make sound, while pipid frogs use laryngeal muscles to produce an implosion of air and create clicking noise. [7] Aquatic mammals such as seals and otters can produce sound using the larynx.