Search results
Results from the WOW.Com Content Network
Code-excited linear prediction (CELP) is a linear predictive speech coding algorithm originally proposed by Manfred R. Schroeder and Bishnu S. Atal in 1985. At the time, it provided significantly better quality than existing low bit-rate algorithms, such as residual-excited linear prediction (RELP) and linear predictive coding (LPC) vocoders (e.g., FS-1015).
A linear encoder is a sensor, transducer or readhead paired with a scale that encodes position. The sensor reads the scale in order to convert the encoded position into an analog or digital signal , which can then be decoded into position by a digital readout (DRO) or motion controller.
Linear predictive coding (LPC) is a method used mostly in audio signal processing and speech processing for representing the spectral envelope of a digital signal of speech in compressed form, using the information of a linear predictive model. [1] [2] LPC is the most widely used method in speech coding and speech synthesis.
In particular, the most common speech coding scheme is the LPC-based code-excited linear prediction (CELP) coding, which is used for example in the GSM standard. In CELP, the modeling is divided in two stages, a linear predictive stage that models the spectral envelope and a code-book-based model of the residual of the linear predictive model.
Linear pulse-code modulation (LPCM) is a specific type of PCM in which the quantization levels are linearly uniform. [5] This is in contrast to PCM encodings in which quantization levels vary as a function of amplitude (as with the A-law algorithm or the μ-law algorithm ).
Algebraic code-excited linear prediction (ACELP) is a speech coding algorithm in which a limited set of pulses is distributed as excitation to a linear prediction filter. It is a linear predictive coding (LPC) algorithm that is based on the code-excited linear prediction (CELP) method and has an algebraic structure.
The encoder-decoder architecture, often used in natural language processing and neural networks, can be scientifically applied in the field of SEO (Search Engine Optimization) in various ways: Text Processing: By using an autoencoder, it's possible to compress the text of web pages into a more compact vector representation. This can help reduce ...
A convolutional encoder is a discrete linear time-invariant system. Every output of an encoder can be described by its own transfer function, which is closely related to the generator polynomial. An impulse response is connected with a transfer function through Z-transform. Transfer functions for the first (non-recursive) encoder are: