Search results
Results from the WOW.Com Content Network
The schematic diagram indicates the roles of insufficient DNA repair in aging and cancer, and the role of apoptosis in cancer prevention. An excess of naturally occurring DNA damage, due to inherited deficiencies in particular DNA repair enzymes, can cause premature aging or increased risk for cancer (see DNA repair-deficiency disorder).
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
Structure of the base-excision repair enzyme uracil-DNA glycosylase excising a hydrolytically-produced uracil residue from DNA. The uracil residue is shown in yellow. When only one of the two strands of a double helix has a defect, the other strand can be used as a template to guide the correction of the damaged strand.
Furthermore, one can assess whether the folding proceeds according to a two-state unfolding as described above. This can be done with differential scanning calorimetry by comparing the calorimetric enthalpy of denaturation i.e. the area under the peak, A peak {\displaystyle A_{\text{peak}}} to the van 't Hoff enthalpy described as follows:
The phage gene 52 protein shares homology with the bacterial gyrase gyrA subunit [18] and the phage gene 39 protein shares homology with the gyrB subunit. [19] Since the host E. coli DNA gyrase can partially compensate for the loss of the phage gene products, mutants defective in either genes 39, 52 or 60 do not completely abolish phage DNA ...
These profiles can be compared to results of an actual denaturation experiment to map the contigs. [2] To this end, more recently it was shown that it is feasible to apply this method to large eukaryotic genomes with the mapping attempt on yeast [5] Another recent application of denaturation of mapping is haplotype-phasing.
Neomorphic mutations are a part of the gain-of-function mutations and are characterized by the control of new protein product synthesis. The newly synthesized gene normally contains a novel gene expression or molecular function. The result of the neomorphic mutation is the gene where the mutation occurs has a complete change in function. [57]
However, in zebrafish and other teleosts the RNA splicing process can still occur on certain genes in the absence of U2AF2. This may be because 10% of genes in zebrafish have alternating TG and AC base pairs at the 3' splice site (3'ss) and 5' splice site (5'ss) respectively on each intron, which alters the secondary structure of the RNA.