enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nondimensionalization - Wikipedia

    en.wikipedia.org/wiki/Nondimensionalization

    For example, if x is a quantity, then x c is the characteristic unit used to scale it. As an illustrative example, consider a first order differential equation with constant coefficients: + = (). In this equation the independent variable here is t, and the dependent variable is x.

  3. List of dimensionless quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_dimensionless...

    Chemical engineering, material science, mechanics (A scale to show the energy needed for detaching two solid particles) [13] [14] Cost of transport: COT = energy efficiency, economics (ratio of energy input to kinetic motion) Damping ratio

  4. Non-dimensionalization and scaling of the Navier–Stokes ...

    en.wikipedia.org/wiki/Non-dimensionalization_and...

    In fluid mechanics, non-dimensionalization of the Navier–Stokes equations is the conversion of the Navier–Stokes equation to a nondimensional form. This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain ...

  5. Scale analysis (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Scale_analysis_(mathematics)

    Scale analysis rules as follows: Rule1-First step in scale analysis is to define the domain of extent in which we apply scale analysis. Any scale analysis of a flow region that is not uniquely defined is not valid. Rule2-One equation constitutes an equivalence between the scales of two dominant terms appearing in the equation. For example,

  6. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  7. Dimensionless quantity - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_quantity

    For example, a 2017 op-ed in Nature [11] argued for formalizing the radian as a physical unit. The idea was rebutted [ 12 ] on the grounds that such a change would raise inconsistencies for both established dimensionless groups, like the Strouhal number , and for mathematically distinct entities that happen to have the same units, like torque ...

  8. Buckingham π theorem - Wikipedia

    en.wikipedia.org/wiki/Buckingham_π_theorem

    Although named for Edgar Buckingham, the π theorem was first proved by the French mathematician Joseph Bertrand in 1878. [1] Bertrand considered only special cases of problems from electrodynamics and heat conduction, but his article contains, in distinct terms, all the basic ideas of the modern proof of the theorem and clearly indicates the theorem's utility for modelling physical phenomena.

  9. Dimensional analysis - Wikipedia

    en.wikipedia.org/wiki/Dimensional_analysis

    A simple application of dimensional analysis to mathematics is in computing the form of the volume of an n-ball (the solid ball in n dimensions), or the area of its surface, the n-sphere: being an n-dimensional figure, the volume scales as x n, while the surface area, being (n − 1)-dimensional, scales as x n−1.