Search results
Results from the WOW.Com Content Network
The temperature of liquid nitrogen can readily be reduced to its freezing point −210 °C (−346 °F; 63 K) by placing it in a vacuum chamber pumped by a vacuum pump. [2] Liquid nitrogen's efficiency as a coolant is limited by the fact that it boils immediately on contact with a warmer object, enveloping the object in an insulating layer of ...
In the above equation, T F is the normal freezing point of the pure solvent (273 K for water, for example); a liq is the activity of the solvent in the solution (water activity for aqueous solution); ΔH fus T F is the enthalpy change of fusion of the pure solvent at T F, which is 333.6 J/g for water at 273 K; ΔC fus p is the difference ...
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
However, this remaining liquid water crystallizes too fast for its properties to be detected or measured. [11] The freezing speed directly influences the nucleation process and ice crystal size. A supercooled liquid will stay in a liquid state below the normal freezing point when it has little opportunity for nucleation—that is, if it is pure ...
Through cryoscopy, a known constant can be used to calculate an unknown molar mass. The term "cryoscopy" means "freezing measurement" in Greek . Freezing point depression is a colligative property , so Δ T depends only on the number of solute particles dissolved, not the nature of those particles.
Cooling baths are generally one of two types: (a) a cold fluid (particularly liquid nitrogen, water, or even air) — but most commonly the term refers to (b) a mixture of 3 components: (1) a cooling agent (such as dry ice or ice); (2) a liquid "carrier" (such as liquid water, ethylene glycol, acetone, etc.), which transfers heat between the ...
Nitrogen, argon, helium and other inert gases are commonly used. To maximize this process called sparging, the solution is stirred vigorously and bubbled for a long time. Because helium is not very soluble in most liquids, it is particularly useful to reduce the risk of bubbles in high-performance liquid chromatography (HPLC) systems.