Search results
Results from the WOW.Com Content Network
In 2009, weak gravitational lensing was used to extend the mass-X-ray-luminosity relation to older and smaller structures than was previously possible to improve measurements of distant galaxies. [29] As of 2013 the most distant gravitational lens galaxy, J1000+0221, had been found using NASA's Hubble Space Telescope.
In weak gravitational lensing, the Jacobian is mapped out by observing the effect of the shear on the ellipticities of background galaxies. This effect is purely statistical; the shape of any galaxy will be dominated by its random, unlensed shape, but lensing will produce a spatially coherent distortion of these shapes.
The effects of foreground galaxy cluster mass on background galaxy shapes. The upper left panel shows (projected onto the plane of the sky) the shapes of cluster members (in yellow) and background galaxies (in white), ignoring the effects of weak lensing. The lower right panel shows this same scenario, but includes the effects of lensing.
Gravitational lensing is an effect of gravitation, most commonly associated with General relativity Wikimedia Commons has media related to Gravitational lensing . Subcategories
The odd number theorem is a theorem in strong gravitational lensing which comes directly from differential topology. The theorem states that the number of multiple images produced by a bounded transparent lens must be odd .
Strong gravitational lensing is a gravitational lensing effect that is strong enough to produce multiple images, arcs, or Einstein rings. Generally, for strong lensing to occur, the projected lens mass density must be greater than the critical density, that is . For point-like background sources, there will be multiple images; for extended ...
The key difference between an embedded lens and a traditional lens is that the mass of a standard lens contributes to the mean of the cosmological density, whereas that of an embedded lens does not. Consequently, the gravitational potential of an embedded lens has a finite range, i.e., there is no lensing effect outside of the void.
Huchra's lens is the lensing galaxy of the Einstein Cross (Quasar 2237+30); it is also called ZW 2237+030 or QSO 2237+0305 G.It exhibits the phenomenon of gravitational lensing that was postulated by Albert Einstein when he realized that gravity would be able to bend light and thus could have lens-like effects.