Search results
Results from the WOW.Com Content Network
There are several types of X-ray diffractometer, depending on the research field (material sciences, powder diffraction, life sciences, structural biology, etc.) and the experimental environment, if it is a laboratory with its home X-ray source or a Synchrotron. In laboratory, diffractometers are usually an "all in one" equipment, including the ...
A powder X-ray diffractometer in motion. X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract in specific directions.
X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering , when there is no change in the energy of the waves.
X-ray powder diffractometer Bruker D8 Advance at FZU – Institute of Physics of the Czech Academy of Sciences. Laboratory X-ray diffraction equipment relies on the use of an X-ray tube, which is used to produce the X-rays. The most commonly used laboratory X-ray tube uses a copper anode, but cobalt and molybdenum are also popular.
X-ray diffraction topography is one variant of X-ray imaging, making use of diffraction contrast rather than absorption contrast which is usually used in radiography and computed tomography (CT). Topography is exploited to a lesser extent with neutrons , and is the same concept as dark field imaging in an electron microscope .
The Miniflex II was introduced in 2006 and offered the advance of a monochromatic X-ray source and a 1D silicon strip detector. The fifth generation (Gen 5) MiniFlex600 system, introduced in 2012, built upon this legacy with 600W of tube power and new PDXL powder diffraction software. 2017 saw the introduction of the 6th generation MiniFlex ...
The wave fields traditionally described are X-rays, neutrons or electrons and the regular lattice are atomic crystal structures or nanometer-scale multi-layers or self-arranged systems. In a wider sense, similar treatment is related to the interaction of light with optical band-gap materials or related wave problems in acoustics .
The measurement of the angles can be used to determine crystal structure, see x-ray crystallography for more details. [ 5 ] [ 13 ] As a simple example, Bragg's law, as stated above, can be used to obtain the lattice spacing of a particular cubic system through the following relation: