Search results
Results from the WOW.Com Content Network
Both gram-positive and gram-negative bacteria commonly have a surface layer called an S-layer. In gram-positive bacteria, the S-layer is attached to the peptidoglycan layer. Gram-negative bacteria's S-layer is attached directly to the outer membrane. Specific to gram-positive bacteria is the presence of teichoic acids in the cell wall. Some of ...
The decolorization step is critical and must be timed correctly; the crystal violet stain is removed from both gram-positive and negative cells if the decolorizing agent is left on too long (a matter of seconds). [19] After decolorization, the gram-positive cell remains purple and the gram-negative cell loses its purple color. [19]
Aggregatibacter actinomycetemcomitans is a Gram-negative coccobacillus prevalent in subgingival plaques. Acinetobacter strains may grow on solid media as coccobacilli. Bordetella pertussis is a Gram-negative coccobacillus responsible for causing whooping cough. Yersinia pestis, the bacterium that causes plague, is also coccobacillus. [26]
Gram-positive bacteria have a thick peptidoglycan layer in their cell wall, which retains the crystal violet during Gram staining, resulting in a purple color. Gram-negative bacteria have a thin peptidoglycan layer which does not retain the crystal violet, so when safranin is added during the process, they stain red.
Schematic of typical Gram-positive cell wall showing arrangement of N-Acetylglucosamine and N-Acetylmuramic acid; Teichoic acids not shown.. The Gram-positive cell wall is characterized by the presence of a very thick peptidoglycan layer, which is responsible for the retention of the crystal violet dyes during the Gram staining procedure.
The outer red layer in this diagram is the capsule, which is distinct from the cell envelope. This bacterium is gram-positive, as its cell envelope comprises a single cell membrane (orange) and a thick peptidoglycan-containing cell wall (purple). The bacterial capsule is a large structure common to many bacteria. [1]
Gram-negative bacteria tend to be more antimicrobial resistant than gram-positive bacteria, and also possess a much more significant periplasmic space between their two membrane bilayers. Since eukaryotes do not possess a periplasmic space, structures and enzymes found in the gram-negative periplasm are attractive targets for antimicrobial drug ...
These bacteria have thick cell walls that give them Gram-positive stains, but they also include a second membrane and are therefore closer in structure to Gram-negative bacteria. Deinococcus survive when their DNA is exposed to high doses of gamma and UV radiation.