Search results
Results from the WOW.Com Content Network
In computer science, Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex , where the total weight of all the edges in the tree is minimized.
A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. [1]
If is edge-unweighted every spanning tree possesses the same number of edges and thus the same weight. In the edge-weighted case, the spanning tree, the sum of the weights of the edges of which is lowest among all spanning trees of , is called a minimum spanning tree (MST). It is not necessarily unique.
Example of rectilinear minimum spanning tree from random points. In graph theory, the rectilinear minimum spanning tree (RMST) of a set of n points in the plane (or more generally, in ) is a minimum spanning tree of that set, where the weight of the edge between each pair of points is the rectilinear distance between those two points.
M. Haque, Md. R. Uddin, and Md. A. Kashem (2007) found a linear time algorithm that can find the minimum degree spanning tree of series-parallel graphs with small degrees. [2] G. Yao, D. Zhu, H. Li, and S. Ma (2008) found a polynomial time algorithm that can find the minimum degree spanning tree of directed acyclic graphs. [3]
The key insight to the algorithm is a random sampling step which partitions a graph into two subgraphs by randomly selecting edges to include in each subgraph. The algorithm recursively finds the minimum spanning forest of the first subproblem and uses the solution in conjunction with a linear time verification algorithm to discard edges in the graph that cannot be in the minimum spanning tree.
A minimum spanning tree (MST) is a minimum-weight, cycle-free subset of a graph's edges such that all nodes are connected. In 2004, Felzenszwalb introduced a segmentation method [4] based on Kruskal's MST algorithm. Edges are considered in increasing order of weight; their endpoint pixels are merged into a region if this doesn't cause a cycle ...
A minimum-cost spanning-forest game (MCSF game) is a generalization of an MCST game, in which multiple supply-nodes are allowed. In general, the core of an MCSF game may be empty. [1] However, if the underlying network is a tree, the core is always non-empty, and core points can be computed in strongly-polynomial time. [9]