Search results
Results from the WOW.Com Content Network
A cellular automaton (CA) is Life-like (in the sense of being similar to Conway's Game of Life) if it meets the following criteria: The array of cells of the automaton has two dimensions. Each cell of the automaton has two states (conventionally referred to as "alive" and "dead", or alternatively "on" and "off")
The number of live cells per generation of the pattern shown above demonstrating the monotonic nature of Life without Death. Life without Death is a cellular automaton, similar to Conway's Game of Life and other Life-like cellular automaton rules. In this cellular automaton, an initial seed pattern grows according to the same rule as in Conway ...
A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. [2] Cellular automata have found application in various ...
The Game of Life, also known as Conway's Game of Life or simply Life, is a cellular automaton devised by the British mathematician John Horton Conway in 1970. [1] It is a zero-player game, [2] [3] meaning that its evolution is determined by its initial state, requiring no further input. One interacts with the Game of Life by creating an initial ...
The Rule 110 cellular automaton (often called simply Rule 110) [a] is an elementary cellular automaton with interesting behavior on the boundary between stability and chaos. In this respect, it is similar to Conway's Game of Life. Like Life, Rule 110 with a particular repeating background pattern is known to be Turing complete. [2]
Each cell is considered to have eight neighbors (Moore neighborhood), as in Life. In each time step, a cell turns on or is "born" if it was off or "dead" but had exactly two neighbors that were on; all other cells turn off. Thus, in the notation describing the family of cellular automata containing Life, it is described by the rule B2/S. [1]
For one-dimensional cellular automata, Gardens of Eden can be found by an efficient algorithm whose running time is polynomial in the size of the rule table of the automaton. For higher dimensions, determining whether a Garden of Eden exists is an undecidable problem , meaning that there is no algorithm that can be guaranteed to terminate and ...
A cellular automaton is defined by its cells (often a one- or two-dimensional array), a finite set of values or states that can go into each cell, a neighborhood associating each cell with a finite set of nearby cells, and an update rule according to which the values of all cells are updated, simultaneously, as a function of the values of their neighboring cells.