Search results
Results from the WOW.Com Content Network
In mathematics, a relation denotes some kind of relationship between two objects in a set, which may or may not hold. [1] As an example, " is less than " is a relation on the set of natural numbers ; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3 ), and likewise between 3 and 4 (denoted as 3 < 4 ), but not between the ...
In the mathematics of binary relations, the composition of relations is the forming of a new binary relation R ; S from two given binary relations R and S. In the calculus of relations , the composition of relations is called relative multiplication , [ 1 ] and its result is called a relative product .
A set-valued function, also called a correspondence or set-valued relation, is a mathematical function that maps elements from one set, the domain of the function, to subsets of another set. [ 1 ] [ 2 ] Set-valued functions are used in a variety of mathematical fields, including optimization , control theory and game theory .
For example, the red and green binary relations in the diagram are functions, but the blue and black ones are not. An injection: a function that is injective. For example, the green relation in the diagram is an injection, but the red one is not; the black and the blue relation is not even a function. A surjection: a function that is surjective ...
A relation is a total order if and only if it is both a partial order and strongly connected. A relation is a strict total order if, and only if, it is a strict partial order and just connected. A strict total order can never be strongly connected (except on an empty domain).
A partial function from X to Y is thus a ordinary function that has as its domain a subset of X called the domain of definition of the function. If the domain of definition equals X, one often says that the partial function is a total function. In several areas of mathematics the term "function" refers to partial functions rather than to ...
Mathematical relations fall into various types according to their specific properties, often as expressed in the axioms or definitions that they satisfy. Many of these types of relations are listed below.
In mathematics, a binary relation R ⊆ X×Y between two sets X and Y is total (or left total) if the source set X equals the domain {x : there is a y with xRy}. Conversely, R is called right total if Y equals the range {y : there is an x with xRy}. When f: X → Y is a function, the domain of f is all of X, hence f is a total relation.