enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zermelo–Fraenkel set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo–Fraenkel_set_theory

    Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes. There are many equivalent formulations of the axioms of Zermelo–Fraenkel set theory. Most of the axioms state the existence of particular sets defined from other sets.

  3. Axiom schema of specification - Wikipedia

    en.wikipedia.org/wiki/Axiom_schema_of_specification

    In many popular versions of axiomatic set theory, the axiom schema of specification, [1] also known as the axiom schema of separation (Aussonderungsaxiom), [2] subset axiom [3], axiom of class construction, [4] or axiom schema of restricted comprehension is an axiom schema. Essentially, it says that any definable subclass of a set is a set.

  4. Set theory - Wikipedia

    en.wikipedia.org/wiki/Set_theory

    Set theory is also a promising foundational system for much of mathematics. Since the publication of the first volume of Principia Mathematica, it has been claimed that most (or even all) mathematical theorems can be derived using an aptly designed set of axioms for set theory, augmented with many definitions, using first or second-order logic.

  5. Zermelo set theory - Wikipedia

    en.wikipedia.org/wiki/Zermelo_set_theory

    The axioms of Zermelo set theory are stated for objects, some of which (but not necessarily all) are sets, and the remaining objects are urelements and not sets. Zermelo's language implicitly includes a membership relation ∈, an equality relation = (if it is not included in the underlying logic), and a unary predicate saying whether an object is a set.

  6. Axiom of extensionality - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_extensionality

    The axiom of extensionality, [1] [2] also called the axiom of extent, [3] [4] is an axiom used in many forms of axiomatic set theory, such as Zermelo–Fraenkel set theory. [5] [6] The axiom defines what a set is. [1] Informally, the axiom means that the two sets A and B are equal if and only if A and B have the same members.

  7. Axiom of regularity - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_regularity

    Naive set theory (the axiom schema of unrestricted comprehension and the axiom of extensionality) is inconsistent due to Russell's paradox. In early formalizations of sets, mathematicians and logicians have avoided that contradiction by replacing the axiom schema of comprehension with the much weaker axiom schema of separation .

  8. Set-theoretic definition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_definition...

    The definition of a finite set is given independently of natural numbers: [3] Definition: A set is finite if and only if any non empty family of its subsets has a minimal element for the inclusion order. Definition: a cardinal n is a natural number if and only if there exists a finite set of which the cardinal is n. 0 = Card (∅)

  9. Axiom of power set - Wikipedia

    en.wikipedia.org/wiki/Axiom_of_power_set

    The subset relation is not a primitive notion in formal set theory and is not used in the formal language of the Zermelo–Fraenkel axioms. Rather, the subset relation ⊆ {\displaystyle \subseteq } is defined in terms of set membership , ∈ {\displaystyle \in } .