enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ramanujan's sum - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_sum

    In number theory, Ramanujan's sum, usually denoted c q (n), is a function of two positive integer variables q and n defined by the formula = (,) =,where (a, q) = 1 means that a only takes on values coprime to q.

  3. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  4. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    The nth partial sum is given by a simple formula: = = (+). This equation was known to the Pythagoreans as early as the sixth century BCE. [5] Numbers of this form are called triangular numbers, because they can be arranged as an equilateral triangle.

  5. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    One may also simultaneously limit the number and size of the parts. Let p(N, M; n) denote the number of partitions of n with at most M parts, each of size at most N. Equivalently, these are the partitions whose Young diagram fits inside an M × N rectangle.

  6. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]

  7. 1729 (number) - Wikipedia

    en.wikipedia.org/wiki/1729_(number)

    1729 is the natural number following 1728 and preceding 1730. It is the first nontrivial taxicab number, expressed as the sum of two cubic numbers in two different ways. It is known as the Ramanujan number or Hardy–Ramanujan number after G. H. Hardy and Srinivasa Ramanujan.

  8. Divisor sum identities - Wikipedia

    en.wikipedia.org/wiki/Divisor_sum_identities

    The purpose of this page is to catalog new, interesting, and useful identities related to number-theoretic divisor sums, i.e., sums of an arithmetic function over the divisors of a natural number , or equivalently the Dirichlet convolution of an arithmetic function () with one:

  9. Pythagorean quadruple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_quadruple

    A Pythagorean quadruple is called primitive if the greatest common divisor of its entries is 1. Every Pythagorean quadruple is an integer multiple of a primitive quadruple. The set of primitive Pythagorean quadruples for which a is odd can be generated by the formulas = +, = (+), = (), = + + +, where m, n, p, q are non-negative integers with greatest common divisor 1 such that m + n + p + q is o

  1. Related searches ramanujan sum of natural numbers from m to n calculator given two strings

    ramanujan sum formularamanujan summation
    ramanujan formularamanujan divergent sum
    ramanujan's sum