Search results
Results from the WOW.Com Content Network
Set square, shaped as 30° - 60° - 90°° triangle The side lengths of a 30°–60°–90° triangle 30° - 60° - 90° right triangle of hypotenuse length 1. This is a triangle whose three angles are in the ratio 1 : 2 : 3 and respectively measure 30° ( π / 6 ), 60° ( π / 3 ), and 90° ( π / 2 ).
A 30°–60°–90° triangle has sides of length 1, 2, and . When two such triangles are placed in the positions shown in the illustration, the smallest rectangle that can enclose them has width 1 + 3 {\displaystyle 1+{\sqrt {3}}} and height 3 {\displaystyle {\sqrt {3}}} .
The hypotenuse (side opposite of the right angle) is of length 1, the side opposite the 30° angle is of length ½, and the side opposite the 60° angle is of length √3/2. Français : Ce fichier montre le triangle particulier d'angles 30°, 60° et 90°.
These set squares come in two usual forms, both right triangles: one with 90-45-45 degree angles, the other with 30-60-90 degree angles. Combining the two forms by placing the hypotenuses together will also yield 15° and 75° angles.
By Pythagoras' theorem, the hypotenuse, or sloping side of the rep-5 triangle, has a length of √ 5. The international standard ISO 216 defines sizes of paper sheets using the √ 2, in which the long side of a rectangular sheet of paper is the square root of two times the short side of the paper. Rectangles in this shape are rep-2.
A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]
As a consequence of the Pythagorean theorem, the hypotenuse is the longest side of any right triangle; that is, the hypotenuse is longer than either of the triangle's legs. For example, given the length of the legs a = 5 and b = 12, then the sum of the legs squared is (5 × 5) + (12 × 12) = 169, the square of the hypotenuse.