Search results
Results from the WOW.Com Content Network
Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:
For infinite trees, simple algorithms often fail this. For example, given a binary tree of infinite depth, a depth-first search will go down one side (by convention the left side) of the tree, never visiting the rest, and indeed an in-order or post-order traversal will never visit any nodes, as it has not reached a leaf (and in fact never will ...
A balanced binary tree is a binary tree structure in which the left and right subtrees of every node differ in height (the number of edges from the top-most node to the farthest node in a subtree) by no more than 1 (or the skew is no greater than 1). [22]
The left figure below shows a binary decision tree (the reduction rules are not applied), and a truth table, each representing the function (,,).In the tree on the left, the value of the function can be determined for a given variable assignment by following a path down the graph to a terminal.
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
In a binary search tree, each node is associated with a search key, and the left-to-right ordering is required to be consistent with the order of the keys. [2] A tree rotation is an operation that changes the structure of a binary tree without changing its left-to-right ordering. Several self-balancing binary search tree data structures use ...
Henzinger and King [2] suggest to represent a given tree by keeping its Euler tour in a balanced binary search tree, keyed by the index in the tour. So for example, the unbalanced tree in the example above, having 7 nodes, will be represented by a balanced binary tree with 14 nodes, one for each time each node appears on the tour.
By touched nodes we mean the following. Consider a BST access algorithm with a single pointer to a node in the tree. At the beginning of an access to a given key , this pointer is initialized to the root of the tree. Whenever the pointer moves to or is initialized to a node, we say that the node is touched. [2]