Search results
Results from the WOW.Com Content Network
If both the gas pressure and volume change simultaneously, then work will be done on or by the gas. In this case, Bernoulli's equation—in its incompressible flow form—cannot be assumed to be valid. However, if the gas process is entirely isobaric, or isochoric, then no work is done on or by the gas (so the simple energy balance is not upset ...
Anelastic flow: () =. Principally used in the field of atmospheric sciences, the anelastic constraint extends incompressible flow validity to stratified density and/or temperature as well as pressure. This allows the thermodynamic variables to relax to an 'atmospheric' base state seen in the lower atmosphere when used in the field of ...
The second equation is the incompressible constraint, stating the flow velocity is a solenoidal field (the order of the equations is not causal, but underlines the fact that the incompressible constraint is not a degenerate form of the continuity equation, but rather of the energy equation, as it will become clear in the following).
The Bernoulli equation applicable to incompressible flow shows that the stagnation pressure is equal to the dynamic pressure and static pressure combined. [1]: § 3.5 In compressible flows, stagnation pressure is also equal to total pressure as well, provided that the fluid entering the stagnation point is brought to rest isentropically.
A special case of the fundamental equation of hydraulics is the Bernoulli's equation. The incompressible Navier–Stokes equation is composite, the sum of two orthogonal equations, = (() +) + = (() +) + where and are solenoidal and irrotational projection operators satisfying + =, and and are the non-conservative and conservative parts of the ...
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
q = Heat per unit mass added into the system. Strictly speaking, enthalpy is a function of both temperature and density. However, invoking the common assumption of a calorically perfect gas, enthalpy can be converted directly into temperature as given above, which enables one to define a stagnation temperature in terms of the more fundamental property, stagnation enthalpy.
The equation is valid in the absence of any concentrated torques and line forces for a compressible, Newtonian fluid. In the case of incompressible flow (i.e., low Mach number) and isotropic fluids, with conservative body forces, the equation simplifies to the vorticity transport equation: