Search results
Results from the WOW.Com Content Network
An electron donating group (EDG) or electron releasing group (ERG, Z in structural formulas) is an atom or functional group that donates some of its electron density into a conjugated π system via resonance (mesomerism) or inductive effects (or induction)—called +M or +I effects, respectively—thus making the π system more nucleophilic.
Delocalizing the radical ion stabilizes the transition state structure. As a result, the energy of activation decreases, enhancing the rate of the overall reaction. According to the captodative effect, the rate of a reaction is the greatest when both the EDG and EWG are able to delocalize the radical ion in the transition state structure. [7]
An electron-withdrawing group (EWG) is a group or atom that has the ability to draw electron density toward itself and away from other adjacent atoms. [1] This electron density transfer is often achieved by resonance or inductive effects.
The city council approved the site plan for Mercy Culture Church's proposed residential facility last night in a divided 6-4 vote after hours of heated debate.
The EWG withdraws electron density by resonance and effectively stabilizes the negative charge that is generated. The corresponding plot will show a positive rho value. In the case of a nucleophilic acyl substitution the effect of the substituent, X, of the non-leaving group can in fact accelerate the rate of the nucleophilic addition reaction ...
You may be familiar with the Environmental Working Group (EWG) because they release a list of the most pesticide-filled produce every year called The Dirty Dozen. They also establish the produce ...
Wall Street experts highlighted the most important stock market charts to watch into next year. From interest rates to software stocks, here's what Wall Street's top technical experts are watching.
In Organic chemistry, the inductive effect in a molecule is a local change in the electron density due to electron-withdrawing or electron-donating groups elsewhere in the molecule, resulting in a permanent dipole in a bond. [1]