Search results
Results from the WOW.Com Content Network
Molybdenum hexacarbonyl is a popular reagent in academic research. [6]One or more CO ligands can be displaced by other ligands. [7] Mo(CO) 6, [Mo(CO) 3 (MeCN) 3], and related derivatives are employed as catalysts in organic synthesis for example, alkyne metathesis and the Pauson–Khand reaction.
The six CO ligands are terminal and the Mo-Mo bond distance is 3.2325 Å. [2] The compound is prepared by treatment of molybdenum hexacarbonyl with sodium cyclopentadienide followed by oxidation of the resulting NaMo(CO) 3 (C 5 H 5). [3] Other methods have been developed starting with Mo(CO) 3 (CH 3 CN) 3 instead of Mo(CO) 6. [4]
W(CO) 6 behaves similarly to the Mo(CO) 6 but tends to form compounds that are kinetically more robust. Cyclopentadienyltungsten tricarbonyl dimer ((C 5 H 5.) 2 W 2 (CO) 6) is produced from W(CO) 6. Treatment of tungsten hexacarbonyl with sodium cyclopentadienide followed by oxidation of the resulting NaW(CO) 3 (C 5 H 5) gives ...
Halogenation of Mo(CO) 6 gives Mo(II) carbonyl halides, which are also versatile precursors. [7] One large collection of compounds have the formula (C 5 R 5 )Mo(CO) 3 X, derived from cyclopentadienylmolybdenum tricarbonyl dimer (X = halide, hydride, alkyl).
(Mesitylene)molybdenum tricarbonyl arises from the reaction of molybdenum hexacarbonyl with hot mesitylene: [1]. Mo(CO) 6 + (CH 3) 3 C 6 H 3 → Mo(CO) 3 [(CH 3) 3 C 6 H 3] + 3 CO It can also be synthesized, with good yields by displacement of pyridine ligands of the trispyridine complex Mo(CO) 3 (pyridine) 3 in the presence of Lewis acids.
The standard atomic weight takes into account the isotopic distribution of the element in a given sample (usually assumed to be "normal"). For example, water has a molar mass of 18.0153(3) g/mol, but individual water molecules have molecular masses which range between 18.010 564 6863 (15) Da (1 H 2 16 O) and 22.027 7364 (9) Da (2 H 2 18 O).
Today's NYT Connections puzzle for Saturday, December 14, 2024The New York Times
Energy level scheme of the σ and π orbitals of carbon monoxide The HOMO of CO is a σ MO. The LUMO of CO is a π* antibonding MO. Most metals form coordination complexes containing covalently attached carbon monoxide. These derivatives, which are called metal carbonyls, tend to be more robust when the metal is in lower oxidation states.