Ad
related to: linear programming questions with solutions
Search results
Results from the WOW.Com Content Network
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization).
Integer programming. The variant where variables are required to be 0 or 1, called zero-one linear programming, and several other variants are also NP-complete [2] [3]: MP1 Some problems related to Job-shop scheduling; Knapsack problem, quadratic knapsack problem, and several variants [2] [3]: MP9 Some problems related to Multiprocessor scheduling
Similarly, an integer program (consisting of a collection of linear constraints and a linear objective function, as in a linear program, but with the additional restriction that the variables must take on only integer values) satisfies both the monotonicity and locality properties of an LP-type problem, with the same general position ...
In the theory of linear programming, a basic feasible solution (BFS) is a solution with a minimal set of non-zero variables. Geometrically, each BFS corresponds to a vertex of the polyhedron of feasible solutions. If there exists an optimal solution, then there exists an optimal BFS.
In linear programming, a discipline within applied mathematics, a basic solution is any solution of a linear programming problem satisfying certain specified technical conditions. For a polyhedron P {\displaystyle P} and a vector x ∗ ∈ R n {\displaystyle \mathbf {x} ^{*}\in \mathbb {R} ^{n}} , x ∗ {\displaystyle \mathbf {x} ^{*}} is a ...
There is a close connection between linear programming problems, eigenequations, and von Neumann's general equilibrium model. The solution to a linear programming problem can be regarded as a generalized eigenvector. The eigenequations of a square matrix are as follows:
Clearly, a #P problem must be at least as hard as the corresponding NP problem, since a count of solutions immediately tells if at least one solution exists, if the count is greater than zero. Surprisingly, some #P problems that are believed to be difficult correspond to easy (for example linear-time) P problems. [ 18 ]
In operations research, the Big M method is a method of solving linear programming problems using the simplex algorithm.The Big M method extends the simplex algorithm to problems that contain "greater-than" constraints.
Ad
related to: linear programming questions with solutions