Search results
Results from the WOW.Com Content Network
That is, h is the x-coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h), and k is the minimum value (or maximum value, if a < 0) of the quadratic function. One way to see this is to note that the graph of the function f(x) = x 2 is a parabola whose vertex is at the origin (0, 0).
Fixing or choosing the x-axis determines the y-axis up to direction. Namely, the y-axis is necessarily the perpendicular to the x-axis through the point marked 0 on the x-axis. But there is a choice of which of the two half lines on the perpendicular to designate as positive and which as negative.
For example, the graph of y = x 2 − 4x + 7 can be obtained from the graph of y = x 2 by translating +2 units along the X axis and +3 units along Y axis. This is because the equation can also be written as y − 3 = (x − 2) 2. For many trigonometric functions, the parent function is usually a basic sin(x), cos(x), or tan(x).
A point in the plane may be represented in homogeneous coordinates by a triple (x, y, z) where x/z and y/z are the Cartesian coordinates of the point. [10] This introduces an "extra" coordinate since only two are needed to specify a point on the plane, but this system is useful in that it represents any point on the projective plane without the ...
The four quadrants of a Cartesian coordinate system. The axes of a two-dimensional Cartesian system divide the plane into four infinite regions, called quadrants, each bounded by two half-axes.
In mathematics, a translation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x'y'-Cartesian coordinate system in which the x' axis is parallel to the x axis and k units away, and the y' axis is parallel to the y axis and h units away.
Illustration of a plane, showing the absolute values (unsigned dotted line lengths) of the coordinates of the points (2, 3), (0, 0), (−3, 1), and (−1.5, −2.5). The first of these signed ordered pairs is the abscissa of the corresponding point, and the second value is its ordinate.
The square has Dih 4 symmetry, order 8. There are 2 dihedral subgroups: Dih 2, Dih 1, and 3 cyclic subgroups: Z 4, Z 2, and Z 1. A square is a special case of many lower symmetry quadrilaterals: A rectangle with two adjacent equal sides; A quadrilateral with four equal sides and four right angles; A parallelogram with one right angle and two ...