enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    A truncated hexagon, t{6}, is a dodecagon, {12}, alternating two types (colors) of edges. An alternated hexagon, h{6}, is an equilateral triangle, {3}. A regular hexagon can be stellated with equilateral triangles on its edges, creating a hexagram. A regular hexagon can be dissected into six equilateral triangles by adding a

  3. Hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_tiling

    The honeycomb conjecture states that hexagonal tiling is the best way to divide a surface into regions of equal area with the least total perimeter. The optimal three-dimensional structure for making honeycomb (or rather, soap bubbles) was investigated by Lord Kelvin , who believed that the Kelvin structure (or body-centered cubic lattice) is ...

  4. Polyhex (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Polyhex_(mathematics)

    Also, as an equilateral triangle is a hexagon and three smaller equilateral triangles it is possible to superimpose a large polyiamond on any polyhex, giving two polyiamonds corresponding to each polyhex. This is used as the basis of an infinite division of a hexagon into smaller and smaller hexagons (an irrep-tiling) or into hexagons and ...

  5. Pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Pentagonal_tiling

    It is possible to divide an equilateral triangle into three congruent non-convex pentagons, meeting at the center of the triangle, and to tile the plane with the resulting three-pentagon unit. [21] A similar method can be used to subdivide squares into four congruent non-convex pentagons, or regular hexagons into six congruent non-convex ...

  6. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    3 constructions for a {3,5+} 6,0; An icosahedron and related symmetry polyhedra can be used to define a high geodesic polyhedron by dividing triangular faces into smaller triangles, and projecting all the new vertices onto a sphere. Higher order polygonal faces can be divided into triangles by adding new vertices centered on each face.

  7. Truncated hexagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Truncated_hexagonal_tiling

    In geometry, the truncated hexagonal tiling is a semiregular tiling of the Euclidean plane.There are 2 dodecagons (12-sides) and one triangle on each vertex.. As the name implies this tiling is constructed by a truncation operation applied to a hexagonal tiling, leaving dodecagons in place of the original hexagons, and new triangles at the original vertex locations.

  8. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    The proof of the correctness of this construction is fairly intuitive, relying on the symmetry of the problem. The trisection of an angle (dividing it into three equal parts) cannot be achieved with the compass and ruler alone (this was first proved by Pierre Wantzel). The internal and external bisectors of an angle are perpendicular.

  9. Polygon partition - Wikipedia

    en.wikipedia.org/wiki/Polygon_partition

    The fair polygon partitioning problem [20] is to partition a (convex) polygon into (convex) pieces with an equal perimeter and equal area (this is a special case of fair cake-cutting). Any convex polygon can be easily cut into any number n of convex pieces with an area of exactly 1/n. However, ensuring that the pieces have both equal area and ...