enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trigonometric integral - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_integral

    Si(x) (blue) and Ci(x) (green) shown on the same plot. Sine integral in the complex plane, plotted with a variant of domain coloring. Cosine integral in the complex plane. Note the branch cut along the negative real axis. In mathematics, trigonometric integrals are a family of nonelementary integrals involving trigonometric functions.

  3. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals. For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [1]

  4. Trigonometric substitution - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_substitution

    In the integral , we may use = ⁡, = ⁡, = ⁡. Then, = ⁡ ⁡ = ⁡ (⁡) = ⁡ ⁡ = = + = ⁡ +. The above step requires that > and ⁡ > We can choose to be the principal root of , and impose the restriction / < < / by using the inverse sine function.

  5. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    If the function f does not have any continuous antiderivative which takes the value zero at the zeros of f (this is the case for the sine and the cosine functions), then sgn(f(x)) ∫ f(x) dx is an antiderivative of f on every interval on which f is not zero, but may be discontinuous at the points where f(x) = 0.

  6. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/wiki/Tangent_half-angle...

    As t goes from 0 to 1, the point follows the part of the circle in the first quadrant from (1, 0) to (0, 1). Finally, as t goes from 1 to +∞, the point follows the part of the circle in the second quadrant from (0, 1) to (−1, 0). Here is another geometric point of view. Draw the unit circle, and let P be the point (−1, 0).

  7. List of definite integrals - Wikipedia

    en.wikipedia.org/wiki/List_of_definite_integrals

    In mathematics, the definite integral ()is the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the lines x = a and x = b, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.

  8. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there. Either method gives Either method gives ∫ sin 2x cos ⁡ 4 x d x = − 1 24 sin ⁡ 6 x + 1 8 sin ⁡ 4 x1 8 sin2 x + C . {\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24 ...

  9. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.