enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler in 1609 (except the third law, and was fully published in 1619), describe the orbits of planets around the Sun. These laws replaced circular orbits and epicycles in the heliocentric theory of Nicolaus Copernicus with elliptical orbits and explained how planetary ...

  3. Dynamics of the celestial spheres - Wikipedia

    en.wikipedia.org/wiki/Dynamics_of_the_celestial...

    Johannes Kepler's (1571–1630) cosmology eliminated the celestial spheres, but he held that the planets were moved both by an external motive power, which he located in the Sun, and a motive soul associated with each planet. In an early manuscript discussing the motion of Mars, Kepler considered the Sun to cause the circular motion of the planet.

  4. Johannes Kepler - Wikipedia

    en.wikipedia.org/wiki/Johannes_Kepler

    Apelt, who saw Kepler's mathematics, aesthetic sensibility, physical ideas, and theology as part of a unified system of thought, produced the first extended analysis of Kepler's life and work. [119] Alexandre Koyré's work on Kepler was, after Apelt, the first major milestone in historical interpretations of Kepler's cosmology and its influence.

  5. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    Orbital mechanics or astrodynamics is the application of ballistics and celestial mechanics to the practical problems concerning the motion of rockets, satellites, and other spacecraft. The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation.

  6. Vicarious Hypothesis - Wikipedia

    en.wikipedia.org/wiki/Vicarious_Hypothesis

    The Vicarious Hypothesis, or hypothesis vicaria, was a planetary hypothesis proposed by Johannes Kepler to describe the motion of Mars. [1] [2] [3] The hypothesis adopted the circular orbit and equant of Ptolemy's planetary model as well as the heliocentrism of the Copernican model.

  7. Copernican Revolution - Wikipedia

    en.wikipedia.org/wiki/Copernican_Revolution

    Kepler's work in astronomy was new in part. Unlike those who came before him, he discarded the assumption that planets moved in a uniform circular motion, replacing it with elliptical motion. Also, like Copernicus, he asserted the physical reality of a heliocentric model as opposed to a geocentric one.

  8. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Examples of circular motion include: special satellite orbits around the Earth (circular orbits), a ceiling fan's blades rotating around a hub, a stone that is tied to a rope and is being swung in circles, a car turning through a curve in a race track, an electron moving perpendicular to a uniform magnetic field, and a gear turning inside a ...

  9. The Mechanical Universe - Wikipedia

    en.wikipedia.org/wiki/The_Mechanical_Universe

    The highlight of the Kepler film is a segment in which we are shown an exquisite graphical realization of the way in which Kepler actually figured out that the orbits of the planets are elliptical rather than circular. The sheer difficulty of the problem he faced and the elegance of the method he applied to solve it are abundantly clear.