Search results
Results from the WOW.Com Content Network
A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. [1]
A Euclidean minimum spanning tree, for a set of points in the Euclidean plane or Euclidean space, is a system of line segments, having only the given points as their endpoints, whose union includes all of the points in a connected set, and which has the minimum possible total length of any such system.
The quality of the tree is measured in the same way as in a graph, using the Euclidean distance between pairs of points as the weight for each edge. Thus, for instance, a Euclidean minimum spanning tree is the same as a graph minimum spanning tree in a complete graph with Euclidean edge weights.
The shortest-path tree from this point to all vertices in the graph is a minimum-diameter spanning tree of the graph. [2] The absolute 1-center problem was introduced long before the first study of the minimum-diameter spanning tree problem, [ 2 ] [ 3 ] and in a graph with n {\displaystyle n} vertices and m {\displaystyle m} edges it can be ...
SVG version of Minimum spanning tree.png based on same original source. Original description follows. Diagram of a minimum spanning tree. Each edge is weighted with a number roughly equal to its length. Dark, thick edges are in the minimum spanning tree. Created by Derrick Coetzee in Mathematica and Adobe Illustrator and Photoshop. I grant this ...
Kruskal's algorithm [1] finds a minimum spanning forest of an undirected edge-weighted graph.If the graph is connected, it finds a minimum spanning tree.It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle. [2]
These algorithms find the minimum spanning forest in a possibly disconnected graph; in contrast, the most basic form of Prim's algorithm only finds minimum spanning trees in connected graphs. However, running Prim's algorithm separately for each connected component of the graph, it can also be used to find the minimum spanning forest. [9]
M. Haque, Md. R. Uddin, and Md. A. Kashem (2007) found a linear time algorithm that can find the minimum degree spanning tree of series-parallel graphs with small degrees. [2] G. Yao, D. Zhu, H. Li, and S. Ma (2008) found a polynomial time algorithm that can find the minimum degree spanning tree of directed acyclic graphs. [3]