enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Commensurability (group theory) - Wikipedia

    en.wikipedia.org/wiki/Commensurability_(group...

    Example: the Gieseking manifold is commensurable with the complement of the figure-eight knot; these are both noncompact hyperbolic 3-manifolds of finite volume. On the other hand, there are infinitely many different commensurability classes of compact hyperbolic 3-manifolds, and also of noncompact hyperbolic 3-manifolds of finite volume. [4]

  3. Special unitary group - Wikipedia

    en.wikipedia.org/wiki/Special_unitary_group

    Furthermore, every rotation arises from exactly two versors in this fashion. In short: there is a 2:1 surjective homomorphism from SU(2) to SO(3); consequently SO(3) is isomorphic to the quotient group SU(2)/{±I}, the manifold underlying SO(3) is obtained by identifying antipodal points of the 3-sphere S 3, and SU(2) is the universal cover of ...

  4. 3-manifold - Wikipedia

    en.wikipedia.org/wiki/3-manifold

    The prime decomposition theorem for 3-manifolds states that every compact, orientable 3-manifold is the connected sum of a unique (up to homeomorphism) collection of prime 3-manifolds. A manifold is prime if it cannot be presented as a connected sum of more than one manifold, none of which is the sphere of the same dimension.

  5. Kleinian group - Wikipedia

    en.wikipedia.org/wiki/Kleinian_group

    The fundamental group of any oriented hyperbolic 3-manifold is a Kleinian group. There are many examples of these, such as the complement of a figure 8 knot or the Seifert–Weber space. Conversely if a Kleinian group has no nontrivial torsion elements then it is the fundamental group of a hyperbolic 3-manifold.

  6. Mapping class group of a surface - Wikipedia

    en.wikipedia.org/wiki/Mapping_class_group_of_a...

    It is of fundamental importance for the study of 3-manifolds via their embedded surfaces and is also studied in algebraic geometry in relation to moduli problems for curves. The mapping class group can be defined for arbitrary manifolds (indeed, for arbitrary topological spaces) but the 2-dimensional setting is the most studied in group theory.

  7. Arithmetic hyperbolic 3-manifold - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_hyperbolic_3...

    The Weeks manifold is the hyperbolic three-manifold of smallest volume [3] and the Meyerhoff manifold is the one of next smallest volume. The complement in the three-sphere of the figure-eight knot is an arithmetic hyperbolic three-manifold [4] and attains the smallest volume among all cusped hyperbolic three-manifolds. [5]

  8. Howson property - Wikipedia

    en.wikipedia.org/wiki/Howson_property

    Among 3-manifold groups, there are many examples that do and do not have the Howson property. 3-manifold groups with the Howson property include fundamental groups of hyperbolic 3-manifolds of infinite volume, 3-manifold groups based on Sol and Nil geometries, as well as 3-manifold groups obtained by some connected sum and JSJ decomposition ...

  9. Category:3-manifolds - Wikipedia

    en.wikipedia.org/wiki/Category:3-manifolds

    Once a small subfield of geometric topology, the theory of 3-manifolds has experienced tremendous growth in the latter half of the 20th century. The methods used tend to be quite specific to three dimensions, since different phenomena occur for 4-manifolds and higher dimensions.