Search results
Results from the WOW.Com Content Network
Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the ...
In computer science, iterative deepening search or more specifically iterative deepening depth-first search [1] (IDS or IDDFS) is a state space/graph search strategy in which a depth-limited version of depth-first search is run repeatedly with increasing depth limits until the goal is found.
MTD(f) is an alpha-beta game tree search algorithm modified to use ‘zero-window’ initial search bounds, and memory (usually a transposition table) to reuse intermediate search results. MTD(f) is a shortened form of MTD(n,f) which stands for Memory-enhanced Test Driver with node ‘n’ and value ‘f’. [ 1 ]
A* (pronounced "A-star") is a graph traversal and pathfinding algorithm that is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. [1]
In essence, fringe search is a middle ground between A* and the iterative deepening A* variant (IDA*). If g(x) is the cost of the search path from the first node to the current, and h(x) is the heuristic estimate of the cost from the current node to the goal, then ƒ(x) = g(x) + h(x), and h* is the actual path cost to the goal.
In iterative deepening search, the previous iteration has already established a candidate for such a sequence, which is also commonly called the principal variation. For any non-leaf in this principal variation, its children are reordered such that the next node from this principal variation is the first child.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Of course, there is no way of knowing the best move beforehand, but when iterative deepening is used, the move that was found to be the best in a shallower search is a good approximation. Therefore this move is tried first. For storing the best child of a node, the entry corresponding to that node in the transposition table is used.