Search results
Results from the WOW.Com Content Network
PageRank U.S. Patent—Method for node ranking in a linked database Archived 2019-08-28 at the Wayback Machine—Patent number 7,058,628—June 6, 2006 PageRank U.S. Patent—Scoring documents in a linked database Archived 2018-03-31 at the Wayback Machine —Patent number 7,269,587—September 11, 2007
The method of infinite descent is a variation of mathematical induction which was used by Pierre de Fermat. It is used to show that some statement Q ( n ) is false for all natural numbers n . Its traditional form consists of showing that if Q ( n ) is true for some natural number n , it also holds for some strictly smaller natural number m .
The simplex method is remarkably efficient in practice and was a great improvement over earlier methods such as Fourier–Motzkin elimination. However, in 1972, Klee and Minty [32] gave an example, the Klee–Minty cube, showing that the worst-case complexity of simplex method as formulated by Dantzig is exponential time. Since then, for almost ...
Potentially All Pairwise RanKings of all possible Alternatives (PAPRIKA) is a method for multi-criteria decision making (MCDM) or conjoint analysis, [1] [2] [3] as implemented by decision-making software and conjoint analysis products 1000minds and MeenyMo.
A Karnaugh map (KM or K-map) is a diagram that can be used to simplify a Boolean algebra expression. Maurice Karnaugh introduced it in 1953 [1] [2] as a refinement of Edward W. Veitch's 1952 Veitch chart, [3] [4] which itself was a rediscovery of Allan Marquand's 1881 logical diagram [5] [6] (aka. Marquand diagram [4]).
SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The SIMPLE algorithm was developed by Prof. Brian Spalding and his student Suhas Patankar at Imperial College London in the early 1970s. Since then it has been extensively used by many researchers to solve different kinds of fluid flow and heat transfer problems. [1]
Explicit methods calculate the state of a system at a later time from the state of the system at the current time, while implicit methods find a solution by solving an equation involving both the current state of the system and the later one.
where c 1 = 1 / a 1 , c 2 = a 1 / a 2 , c 3 = a 2 / a 1 a 3 , and in general c n+1 = 1 / a n+1 c n . Second, if none of the partial denominators b i are zero we can use a similar procedure to choose another sequence { d i } to make each partial denominator a 1: