enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ampère's force law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_force_law

    In magnetostatics, the force of attraction or repulsion between two current-carrying wires (see first figure below) is often called Ampère's force law. The physical origin of this force is that each wire generates a magnetic field , following the Biot–Savart law , and the other wire experiences a magnetic force as a consequence, following ...

  3. Glossary of electrical and electronics engineering - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_electrical_and...

    Ampère's circuital law The mathematical relation between the integral of the magnetic field over some closed curve to the current passing through the region bound by the curve. Ampère's force law The mathematical relation between the force between two current carrying conductors and the current flowing in them. Ampère's law Ampère's ...

  4. History of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/History_of_Maxwell's_equations

    The four equations we use today appeared separately in Maxwell's 1861 paper, On Physical Lines of Force: Equation (56) in Maxwell's 1861 paper is Gauss's law for magnetism, ∇ • B = 0. Equation (112) is Ampère's circuital law, with Maxwell's addition of displacement current.

  5. Ampère - Wikipedia

    en.wikipedia.org/wiki/Ampère

    Ampère's force law, the force of attraction or repulsion between two current-carrying wires; Monge–Ampère equation, a type of nonlinear second order partial differential equation; AMPERS, the Association of Minnesota Public Educational Radio Stations; All pages with titles beginning with Ampère; All pages with titles beginning with Ampere

  6. André-Marie Ampère - Wikipedia

    en.wikipedia.org/wiki/André-Marie_Ampère

    André-Marie Ampère (UK: / ˈ æ m p ɛər /, US: / ˈ æ m p ɪər /; [1] French: [ɑ̃dʁe maʁi ɑ̃pɛʁ]; 20 January 1775 – 10 June 1836) [2] was a French physicist and mathematician who was one of the founders of the science of classical electromagnetism, which he referred to as electrodynamics.

  7. Quasistatic approximation - Wikipedia

    en.wikipedia.org/wiki/Quasistatic_approximation

    In magnetostatics equations such as Ampère's Law or the more general Biot–Savart law allow one to solve for the magnetic fields produced by steady electrical currents. Often, however, one may want to calculate the magnetic field due to time varying currents (accelerating charge) or other forms of moving charge.

  8. Ampère's circuital law - Wikipedia

    en.wikipedia.org/wiki/Ampère's_circuital_law

    In classical electromagnetism, Ampère's circuital law (not to be confused with Ampère's force law) [1] relates the circulation of a magnetic field around a closed loop to the electric current passing through the loop. James Clerk Maxwell derived it using hydrodynamics in his 1861 published paper "On Physical Lines of Force". [2]

  9. Electric current - Wikipedia

    en.wikipedia.org/wiki/Electric_current

    The I symbol was used by André-Marie Ampère, after whom the unit of electric current is named, in formulating Ampère's force law (1820). [8] The notation travelled from France to Great Britain, where it became standard, although at least one journal did not change from using C to I until 1896. [9]