Search results
Results from the WOW.Com Content Network
Synthetic-aperture radar (SAR) is a form of radar that is used to create two-dimensional images or three-dimensional reconstructions of objects, such as landscapes. [1] SAR uses the motion of the radar antenna over a target region to provide finer spatial resolution than conventional stationary beam-scanning radars.
The main advantage of the STAR architecture is that it requires no mechanical scanning of an antenna. Using a static antenna simplifies the antenna system dynamics and improves the time-bandwidth product of the radiometer. Furthermore, aperture thinning reduces the overall volume and mass of the antenna system.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Synthetic aperture radar (SAR) allow for an angular resolution beyond real beamwidth by moving the aperture over the target, and adding the echoes coherently. Architecture: The field of view is scanned with a highly directive frequency-orthogonal (slotted waveguide), spatially orthogonal (switched beamforming networks), or time-orthogonal beams.
The NASA-ISRO Synthetic Aperture Radar (NISAR) mission is a joint project between NASA and ISRO to co-develop and launch a dual-frequency synthetic aperture radar on an Earth observation satellite in 2025. The satellite will be the first radar imaging satellite to use dual frequencies.
Space-based radar or spaceborne radar is a radar operating in outer space; orbiting radar is a radar in orbit and Earth orbiting radar is a radar in geocentric orbit. A number of Earth-observing satellites , such as RADARSAT , have employed synthetic aperture radar (SAR) to obtain terrain and land-cover information about the Earth .
The radar system required about 80 hours to collect one complete aperture of high-resolution, fully polarimetric data. Its peak power was at 500 kW with a pulse repetition frequency of 40 Hz, and the average transmitted power was about 20 mW. Creating the radar image required the railSAR to limit the Fourier processing to very small patches ...
The AN/APG-68(V)9 [6] radar system consists of the following line-replaceable units: Antenna; Medium Duty Transmitter (MDT) Modular Receiver/Exciter (MoRE) Common Radar Processor (CoRP) The AN/APG-68(V)9 radar is the latest development. Besides the increase in scan range compared to the previous version, it has a Synthetic aperture radar (SAR ...