Search results
Results from the WOW.Com Content Network
Potassium permanganate is an inorganic compound with the chemical formula KMnO 4.It is a purplish-black crystalline salt, which dissolves in water as K + and MnO − 4 ions to give an intensely pink to purple solution.
The gram-atom is a former term for a mole of atoms, and gram-molecule for a mole of molecules. [7] Molecular weight (M.W.) (for molecular compounds) and formula weight (F.W.) (for non-molecular compounds), are older terms for what is now more correctly called the relative molar mass (M r). [8]
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
The standard unit is the meter cubed per kilogram (m 3 /kg or m 3 ·kg −1). Sometimes specific volume is expressed in terms of the number of cubic centimeters occupied by one gram of a substance. In this case, the unit is the centimeter cubed per gram (cm 3 /g or cm 3 ·g −1). To convert m 3 /kg to cm 3 /g, multiply by 1000; conversely ...
However, one gram of hydrogen reacts with 8 grams of oxygen to give water or with 35.5 grams of chlorine to give hydrogen chloride: hence 8 grams of oxygen and 35.5 grams of chlorine can be taken to be equivalent to one gram of hydrogen for the measurement of equivalent weights. This system can be extended further through different acids and bases.
The derived quantity relative molecular mass is the unitless ratio of the mass of a molecule to the atomic mass constant (which is equal to one dalton). [2] The molecular mass and relative molecular mass are distinct from but related to the molar mass. The molar mass is defined as the mass of a given substance divided by the amount of the ...
Using the number density of an ideal gas at 0 °C and 1 atm as a yardstick: n 0 = 1 amg = 2.686 7774 × 10 25 m −3 is often introduced as a unit of number density, for any substances at any conditions (not necessarily limited to an ideal gas at 0 °C and 1 atm).
Historically, the mole was defined as the amount of substance in 12 grams of the carbon-12 isotope.As a consequence, the mass of one mole of a chemical compound, in grams, is numerically equal (for all practical purposes) to the mass of one molecule or formula unit of the compound, in daltons, and the molar mass of an isotope in grams per mole is approximately equal to the mass number ...