Search results
Results from the WOW.Com Content Network
This helicase was described as a "DNA unwinding enzyme" that is "found to denature DNA duplexes in an ATP-dependent reaction, without detectably degrading". [13] The first eukaryotic DNA helicase discovered was in 1978 in the lily plant. [14]
Helicase, POLQ-like, also known as Helicase Q (HELQ), HEL308 and Holliday junction migration protein, encoded by the gene HELQ1, is a DNA helicase found in humans, archea and many other organisms. [5] HelQ is a replication-linked repair helicase that preserves DNA integrity through helping in the repair of DNA that has become damaged. [6]
Each mitochondrion contains a small amount of DNA which is known as mitochondrial DNA (mtDNA). The Twinkle protein is involved in the production of mtDNA by functioning as an adenine nucleotide dependent DNA helicase, an enzyme that binds to DNA and temporarily unwinds the double helix of the DNA molecule so that it can replicate. [9]
Werner syndrome ATP-dependent helicase, also known as DNA helicase, RecQ-like type 3, is an enzyme that in humans is encoded by the WRN gene. WRN is a member of the RecQ Helicase family. [ 5 ] Helicase enzymes generally unwind and separate double-stranded DNA .
Bind to ssDNA and prevent the DNA double helix from re-annealing after DNA helicase unwinds it, thus maintaining the strand separation, and facilitating the synthesis of the new strand. Topoisomerase: Relaxes the DNA from its super-coiled nature. DNA gyrase: Relieves strain of unwinding by DNA helicase; this is a specific type of topoisomerase ...
Bloom syndrome protein is a protein that in humans is encoded by the BLM gene and is not expressed in Bloom syndrome. [5]The Bloom syndrome gene product is related to the RecQ subset of DExH box-containing DNA helicases and has both DNA-stimulated ATPase and ATP-dependent DNA helicase activities.
One example of a Z-DNA binding protein is the vaccinia E3L protein, which is a product of the E3L gene and mimics a mammalian protein that binds Z-DNA. [37] [38] Not only does the E3L protein have affinity to Z-DNA, it has also been found to play a role in the level of severity of virulence in mice caused by vaccinia virus, a type of poxvirus.
The steric model hypothesizes that the helicase encircles dsDNA and, after local melting of the duplex DNA at the origin, translocates away from the origin, dragging a rigid proteinaceous "wedge" (either part of the helicase itself or another associated protein) that separates the DNA strands. [32]