Search results
Results from the WOW.Com Content Network
The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that associates an element of the set to every pair of elements of the set (as does every binary operation) and satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.
D 2n: the dihedral group of order 2n, the same as Dih n (notation used in section List of small non-abelian groups) S n: the symmetric group of degree n, containing the n! permutations of n elements; A n: the alternating group of degree n, containing the even permutations of n elements, of order 1 for n = 0, 1, and order n!/2 otherwise
A comparatively recent trend in the theory of finite groups exploits their connections with compact topological groups (profinite groups): for example, a single p-adic analytic group G has a family of quotients which are finite p-groups of various orders, and properties of G translate into the properties of its finite quotients.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra.
These groups (the groups of Lie type, together with the cyclic groups, alternating groups, and the five exceptional Mathieu groups) were believed to be a complete list, but after a lull of almost a century since the work of Mathieu, in 1964 the first Janko group was discovered, and the remaining 20 sporadic groups were discovered or conjectured ...
If G is any group, and S is a generating subset of G, then every element of G is also of the above form; but in general, these products will not uniquely describe an element of G. For example, the dihedral group D 8 of order sixteen can be generated by a rotation, r, of order 8; and a flip, f, of order 2; and certainly any element of D 8 is a ...
For example, in the symmetric group shown above, where ord(S 3) = 6, the possible orders of the elements are 1, 2, 3 or 6. The following partial converse is true for finite groups : if d divides the order of a group G and d is a prime number , then there exists an element of order d in G (this is sometimes called Cauchy's theorem ).
The map m is the group operation, the map e (whose domain is a singleton) picks out the identity element u of G, and the map inv assigns to every group element its inverse. e G : G → G is the map that sends every element of G to the identity element. A topological group is a group object in the category of topological spaces with continuous ...