enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.

  3. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:

  4. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    To traverse arbitrary trees (not necessarily binary trees) with depth-first search, perform the following operations at each node: If the current node is empty then return. Visit the current node for pre-order traversal. For each i from 1 to the current node's number of subtrees − 1, or from the latter to the former for reverse traversal, do:

  5. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A perfect binary tree is a binary tree in which all interior nodes have two children and all leaves have the same depth or same level (the level of a node defined as the number of edges or links from the root node to a node). [18] A perfect binary tree is a full binary tree.

  6. Dichotomic search - Wikipedia

    en.wikipedia.org/wiki/Dichotomic_search

    Abstractly, a dichotomic search can be viewed as following edges of an implicit binary tree structure until it reaches a leaf (a goal or final state). This creates a theoretical tradeoff between the number of possible states and the running time: given k comparisons, the algorithm can only reach O(2 k ) possible states and/or possible goals.

  7. Day–Stout–Warren algorithm - Wikipedia

    en.wikipedia.org/wiki/Day–Stout–Warren_algorithm

    The Day–Stout–Warren (DSW) algorithm is a method for efficiently balancing binary search trees – that is, decreasing their height to O(log n) nodes, where n is the total number of nodes. Unlike a self-balancing binary search tree , it does not do this incrementally during each operation, but periodically, so that its cost can be amortized ...

  8. Search tree - Wikipedia

    en.wikipedia.org/wiki/Search_tree

    A Binary Search Tree is a node-based data structure where each node contains a key and two subtrees, the left and right. For all nodes, the left subtree's key must be less than the node's key, and the right subtree's key must be greater than the node's key. These subtrees must all qualify as binary search trees.

  9. Optimal binary search tree - Wikipedia

    en.wikipedia.org/wiki/Optimal_binary_search_tree

    The tree with the minimal weighted path length is, by definition, statically optimal. But weighted path lengths have an interesting property. Let E be the weighted path length of a binary tree, E L be the weighted path length of its left subtree, and E R be the weighted path length of its right subtree. Also let W be the sum of all the ...